REHDS AND ANAIL

21ST ANNUAL

Report and Survey of

Biopharmaceutical Manufacturing

Capacity and Production

A Study of Biotherapeutic Developers and Contract Manufacturing Organizations

INSTITUTION PARTNERS

21ST ANNUAL

Report and Survey of Biopharmaceutical Manufacturing Capacity and Production

A Study of Biotherapeutic Developers and Contract Manufacturing Organizations

April 2024

BioPlan Associates, Inc.
One Research Court, Ste. 450
Rockville, MD 20850 USA
301.921.5979
www.bioplanassociates.com

21th Annual Report and Survey of Biopharmaceutical Manufacturing Capacity and Production

A Study of Biotherapeutic Developers and Contract Manufacturing Organizations

April 2024

BioPlan Associates, Inc. One Research Court, Ste. 450 Rockville, MD 20850 1-301-921-5979 www.bioplanassociates.com

Copyright © 2024 by BioPlan Associates, Inc.

All rights reserved, including the right of reproduction in whole or in part in any form. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the publisher.

For information on special discounts or permissions contact BioPlan Associates, Inc. at 301-921-5979, or info@bioplanassociates.com

Managing Editor: Ioanna Deni
Design and Production: Donnie E. Gillespie
Contributing Editors: Dr. Smita Khanna
Layout and Cover Design: ES Design

ISBN 978-1-934106-50-1

ACKNOWLEDGMENTS

We wish to acknowledge the contributions of our authors and **Subject Matter Experts**. Without their added subject matter contributions, this project would not have been possible:

- Laura Brey, Senior Manager Market Intelligence, AGC Biologics
- Dominic Clarke, PhD, VP of Technical Operations, IntegriCell for Cryoport Systems
- Nick Kotlarski, PhD, President and COO, Bioworkshops
- Paul Priebe, Single-Use Bioprocess Expert Consultant
- Stefan Schmidt, PhD, CEO, Evitria AG
- Christoph Winterhalter, PhD, Chief Business Officer, AGC Biologics
- Avril Vermunt, Biologics, Global Manufacturing & Supply, Telix Pharmaceuticals Ltd.

We would also like to recognize our Institution Partners, and our Media Sponsors. Their efforts in assuring the cooperation and participation in the survey of their respective memberships helped guarantee the large group of survey participants to ensure data accuracy.

Our *Institution Partners*, all of whom contributed their time and effort to ensure the broad, international coverage of this project, include:

- AusBiotech (Malvern, Victoria, Australia)
- Bio-Process Systems Alliances/SOCMA (BPSA) (Washington, D.C., USA)
- D2L Pharma (Bangalore, India)
- Evaluating Biopharma (Rockville, MD, USA)
- North Carolina Biotechnology Center (Research Triangle Park, NC, USA)
- Pharma & Biopharma Outsourcing Association (PBOA) (Ringwood, NJ, USA)

To ensure global coverage for this project, we again invited major *Media Sponsors* to support our outreach to biopharmaceutical decision-makers. Our media sponsors, who helped ensure broad and representative coverage of industry participation, include:

- American Pharmaceutical Review/Pharmaceutical Outsourcing (South San Francisco, CA, USA)
- BioPharm International (Iselin, NJ, USA)
- BioProcess International (Westborough, MA, USA)
- BioProcess Online (Eric, PA, USA)
- Contract Pharma, (Ramsey, NJ, USA)
- CPhI (London, UK)
- Pharmaceutical Manufacturing (Schaumburg, IL, USA)
- Pharmaceutical Technology/Pharmaceutical Technology Europe (Iselin, NJ, USA)

The early participation of our authors and sponsors in evaluating the areas and trends to be surveyed this year ensured the project was designed to cover the most relevant issues in biopharmaceutical manufacturing today. As always, their continued support was critical to the success of the project.

Eric S. Langer, Publisher

Report and Survey o	of Biopharmaceutical	Manufacturing	Capacity a	nd Production
---------------------	----------------------	---------------	------------	---------------

ABOUT BIOPLAN ASSOCIATES, INC.

BioPlan Associates, Inc. is a biotechnology and life sciences market analysis, research, and publishing organization. We have managed biotechnology, biopharmaceutical, diagnostic, and life sciences research projects for companies of all sizes for over 30 years. Our extensive market analysis, research and management project experience covers biotechnology and biopharmaceutical manufacturing, vaccine and therapeutic development, contract research services, diagnostics, devices, biotechnology supply, physician office labs and hospital laboratory environments.

We prepare custom studies and provide public information our clients require to make informed strategic decisions, define objectives, and identify customer needs. With market information, our clients are better able to make informed, market-based decisions because they understand the trends and needs in high technology industries.

BioPlan Associates, Inc.
One Research Court, Ste. 450
Rockville, MD 20850 USA
www.bioplanassociates.com
+1 301-921-5979

EDITORS

Eric S. Langer, MS, President, BioPlan Associates, Inc.

Mr. Langer is President and Managing Partner and President at BioPlan Associates, Inc., a biotechnology, and life sciences consulting company that has been providing management and market strategy services, and technology analysis to biopharmaceutical and healthcare organizations since 1989. He has over 25 years' experience in biotechnology and life sciences management and market assessment. He is an experienced medical and biotechnology industry practitioner, strategist, researcher, and science writer. He has held senior management and marketing positions at biopharmaceutical supply companies. He teaches Biotechnology Marketing, Marketing Management, Services Marketing, Advertising Strategy, and Bioscience Communication at Johns Hopkins University, American University, and lectures extensively on pricing and channel management topics. Mr. Langer has a degree in Chemistry and a Masters in International Business. He has written and consulted extensively for companies involving large scale biopharmaceutical manufacturing, global biotechnology in China, Asia, and the Middle East; he has expertise in cell culture markets, media, sera, tissue engineering, stem cells, diagnostic products, blood products, genetics, DNA/PCR purification, blood components, and many other areas.

Ioanna Deni, Technical Director, Research

Ioanna Deni is Technical Director, Research at BioPlan Associates. She is an experienced quantitative market research analyst completing a Ph.D. in biomedical sciences and extensive experience in biopharmaceutical life science research. Her research background includes quantitative and qualitative market research expertise as an AI and healthcare specialist at Intelligence Ventures.

Dr. Smita Khanna, Technical Director, Research

Smita Khanna, PhD, is Technical Director, Research at BioPlan Associates. With a PhD in Biotechnology, she has over 20 years' experience as a biopharma and healthcare market researcher/analyst, and extensive experience working in key industry segments. Her background includes the Council of Scientific & Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), India, and her expertise includes primary and secondary research, and market analysis of healthcare and biopharma segments. In addition, she contributes to international publications and journals, and research for in-depth reports.

Donnie E. Gillespie, Director, Research Projects

Donnie E. Gillespie is Director, Research Projects at BioPlan Associates. She has over 20 years' experience in marketing and healthcare research. She is editor and manager of several industry publications, reports, and databases, including the Report and Survey of Biopharmaceutical Manufacturing Capacity and Production and the Top1000Bio Facility Index and Database. She also oversees the Biotechnology Industry Council (BIC), a panel of subject matter experts in the biopharmaceutical industry providing in-depth knowledge to research projects. In addition, she provides secondary marketing research services as well as primary qualitative research.

.

ABOUT THE AUTHORS: (ALPHABETICAL)

Laura Brey, Senior Manager Market Intelligence, AGC Biologics

Dr. Laura Brey serves as Senior Manager for Market Intelligence at AGC Biologics, a global biopharmaceutical CDMO with sites in US, EU, and Japan. In her role, Laura monitors the evolution and trends of the Biopharmaceutical market and advises Leadership Management. Prior to that she worked for several years as the Cell and Gene Therapy Proposal Manager. She holds a PhD in Synthetic Biology from the University of Copenhagen.

Dominic Clarke, PhD, VP of Technical Operations, IntegriCell for Cryoport Systems

Dr. Dominic Clarke serves as Vice President of Technical Operations, IntegriCell for Cryoport Systems after spending the past two years as CSO at Discovery Life Sciences. Previously, he held the role of Director of Global Cell Therapy Strategy and Innovation at Charles River Laboratories (CRL) with overall responsibilities for developing and expanding the cell supply business unit. Prior to joining CRL, he was the Global Head of Cell Therapy at HemaCare where he helped expand overall visibility which subsequently aided in the acquisition by CRL. He started his career in cryobiology and led the research & development efforts for BioLife Solutions before transitioning to delivering industry leading single-use solutions at Charter Medical. Dominic has nearly 20 years in cell & gene therapies and has been serving as the Chair of the International Society for Cell & Gene Therapies (ISCT) Process Development and Manufacturing industry sub-committee for the past 5 years.

Nick Kotlarski, PhD, President and COO, Bioworkshops

Dr. Nick Kotlarski is a co-founder of the CDMO, Bioworkshops, where he currently leads international business development. He has more than 25 years of industry experience spanning product development through to commercial manufacture focused on biologics. The bulk of his experience is divided nearly equally between production of microbial and mammalian-based recombinant products, but also includes manufacturing of CGT, cell therapies, and natural products for clinical trials. In the past 10 years he has led the build, start-up, and operation of five bioprocessing facilities in Greater China all using mammalian cell culture. Nick is a Chartered Engineer (CEng) and Member of the Institution of Chemical Engineers (MIChemE).

Paul Priebe, Single-Use Bioprocess Expert Consultant

Paul Priebe currently works as an independent consultant. He primarily consults on bioprocess technology commercialization, product and market strategy, product management and go-to-market approaches. He specializes in all aspects of single use technologies for bioprocess applications. Previously he spent close to 4 years at Qosina, where he led product and market strategy and launched the Qosina BioProcess brand and product portfolio. His nearly 18 years previous experience at Sartorius Stedim biotech included leadership roles in product and application management for all Sartorius bioprocess technologies, with a specialty in single use technology. He is a current member of ASME BPE and the BPSA Scientific Advisory Council and served as a long-time board member

of the BPSA, and active member of the PDA, ASTM E55 and Biophorum Supply Partner Phorum. He was a contributing author of PDA TR66 and ASTM E3051 and served on several important task groups within ASME BPE.

Stefan R. Schmidt, PhD, CEO, Evitria AG

Dr. Stefan R. Schmidt serves as CEO at Evitria AG in Zürich, Switzerland after spending five years as COO at BioAtrium AG, a Lonza and Sanofi JV. Previously he held the position as CSO and other senior executive roles at Rentschler Biopharma with overall responsibilities for development, production, and innovation. Before that, he was CSO at ERA Biotech in Barcelona, directing the company's R&D efforts. Prior to that, he worked at AstraZeneca in Sweden where he led the unit of Protein Sciences as Associate Director. He started his leadership career in Munich more than 25 years ago where he built up protein biochemistry teams for Connex and GPC-Biotech. During his academic education he earned a PhD in Biochemistry and an MBA in Marketing.

Christoph Winterhalter, PhD, Chief Business Officer, AGC Biologics

Dr. Christoph Winterhalter has 25 years of experience in Life Science and serves as Chief Business Officer at AGC Biologics, a global biopharmaceutical CDMO with sites in US, EU, and Japan. Before that, he was the Senior Vice President Business Development at AGC Biologics and heading Business Development globally at Rentschler Biopharma with a strong contribution to the tremendous growth phase from 2013-2017 were sales more than tripled. Prior to joining Rentschler Biopharma, he served as Vice President Biosolutions at Wacker Chemical Corporation in Michigan US heading a 100 Mil USD business for Life Science. Before that he held several positions at Wacker Chemie AG in Germany, where he started in 1995 to develop the first fermentation route to cysteine by metabolic design in E. coli. He also holds a Ph.D. in Microbiology at the Technical University of Munich.

Avril Vermunt, VP, Biologics, Global Manufacturing & Supply, Telix Pharmaceuticals Ltd.

Avril Vermunt is currently VP, Biologics, Global Manufacturing & Supply at Telix Pharmaceuticals Ltd. Avril loves contributing her 20+ years of experience towards biopharmaceutical innovation to enable compliant operations and improve patient accessibility & affordability. Her previous experiences include leadership positions at EQRx and Adverum Bio, technology strategy and management roles at Cytiva, process development at Amgen, and manufacturing at Fujifilm Diosynth. She has been an ISPE member since joining the student chapter at North Carolina State University, where she received her degree in Chemical Engineering. She also completed the Executive MBA program at the University of Colorado and is in progress in the Doctorate of Engineering program at Pennsylvania State University.

21st Annual Report and Survey of Biopharmaceutical Manufacturing Capacity and Production • April 2024

A Study of Biotherapeutic Developers and Contract Manufacturing Organizations

CONTENTS

METHO	DOLOGY	XXVI
CHAPTER 0: DEMOGRAPHICS		
Int	roduction	1
0-	Respondents' Area of Involvement	2
0-2	Respondents' Qualifications	4
0-3	B Facility Locations	6
0-4	Areas of Biopharmaceutical Manufacturing Operations	8
0-4	Production Operations, Phase of Development	11
0-6	S Employees at Facility	14
0-7	Batches Run at Facility per Year	15
0-8	Single-Use Bioreactor Capacity in Use at Site	17
0-9		
CHAPT	ER 1: INTRODUCTION AND DISCUSSION	21
1-1	Sector and Market Overview	21
	The Biopharma(ceutical) Industry is Losing its Core Identity	22
	M&A Activities	23
	Contract Manufacturing Trends	24
1-2	2 Biopharmaceutical Industry Status and Market Trends	25
	U.S. Healthcare is Changing	25
1-3	B Pharma Industry is Shifting to Biopharmaceuticals	28
	Pharmaceutical Industry Dependence on Biopharmaceuticals	
1-4	Global Biopharmaceutical Market Trends	29
	Growth in Biopharmaceutical Product Sales is Increasing the Demand	
	for Bioprocessing	
	Overall Health of the Biopharmaceutical Sector	
	U.S. Industry Leadership Continues	
	Biopharmaceuticals in the Rest-of-the-World	30

1-5	Biopharmaceutical Markets by Product Class	38
	Monoclonal Antibodies (mAbs) are the Leading Product Class	39
	Monoclonals are a Costly Treatment	
	Animal Derived Products and Biopharmaceuticals	41
	Plant-based Biopharmaceutical Manufacturing	41
1-6	Future Trends in the Biopharmaceutical Industry	42
	Future Trends in Biopharma	42
	Conclusion	46
СНАРТЕ	ER 2: FUTURE OF BIOPROCESSING: EXPERTS' PERSPECTIVE	47
2-1	2023 FDA Biopharmaceutical Approvals: Promising Year for Novel	
	Biologics Driven by Innovation and Targeted Therapies	48
2-2	China's Position in Global BioManufacturing: A Comparison of	
	China's Emerging Position vs Established Regions' Manufacturing	
	Capacity and Production	54
2-3		00
	Most Advanced Modality	63
2-4	Design Principles and Solutions to Purification Challenges of Asymmetric Fc-Containing Bispecific Antibodies	67
0.5		
2-5	CRISPR-based Treatment: Capabilities and Challenges	/8
CHAPTE	ER 3: TRENDS AND EMERGING TECHNOLOGIES	
3-1	Industry Trends in 2024	81
	Introduction	81
3-2	Bioprocessing Improvements Needed in 2024	82
	Bioprocessing Improvements Most Needed	82
	Novel Bioprocessing Systems/Innovations	
	Novel Bioprocessing Systems/Innovations, Biomanufacturers vs. CMOs	89
3-3	Operational Changes in 2024	91
	Operational Changes (2010 – 2012, 2022-2024)	93
	Operational Changes: Biomanufacturers vs. CMOs	96
	Operational Changes: U.S. vs. Western Europe	98
3-4	Budget Issues in 2024	100
	Budget Change Comparisons (2009-2024)	103
3-5	Top Bioprocessing Budget Expenditures	108
	Top New Bioprocessing Budget Expenditures (2020-2024)	110
3-6	New Bioprocessing Products Development Opportunities (2024)	112
	Upstream New Product Areas of Interest	112
	Trends: Upstream New Product Areas of Interest (2010-2024)	114
	Downstream New Product Areas of Interest	116
	Trends: Downstream New Product Areas of Interest (2010-2024)	118
	Other General New Product Areas of Interest	120
	Trends: Other General New Product Areas of Interest (2010-2024)	122

		New Product Development Areas: Biomanufacturers vs. CMOs	124
		New Product Development Areas: U.S. vs. Western Europe and ROW	126
	3-7	Cost-Cutting Actions & Development Timelines	128
		Cost-Cutting Changes: Specific to Outsourcing	130
		Factors Impacting Reduction in Cost of Goods (2020-2024)	132
	3-8	Average Cost per Gram Recombinant Protein	133
		Distribution, Average Cost per Gram for PRIMARY Recombinant Protein (2017-2024)	134
	3-9	Assay Development	136
		Biomanufacturing Assay Areas Required; Biomanufacturers vs. CMOs	138
		Biomanufacturing Assay Areas Required, U.S. vs Western Europe	140
	3-10	Selecting and Purchasing Commercial-Scale Bioreactors	142
		Largest Commercial-Scale Bioreactor Expected in Next Two Years (2022 data)	142
		Top Options for Bioreactor Platforms at Commercial Scale	143
		Largest Stainless Steel Bioreactor Capacity Purchase in Next Two Years	
		(2024) (2022 data)	146
		Largest Single-Use Bioreactor Capacity Purchase in Next Two Years	
		(2024) (2022 data)	
	3-11	Discussion: Industry Trends and Issues	
		Cost Cutting Trends	
		Discussion of Needed Single-use Innovations	
		Trends in Bioprocessing Industry Desires for Improved Products and Services	150
CH	APTE	R 4: CAPACITY UTILIZATION	.151
	4-1	Capacity Utilization Trends	151
		Capacity Utilization Definitions	151
		Relevance of Capacity Utilization	151
		Capacity Utilization in Other Industries, 2024: US Federal Reserve Board	
		Comparisons	
		Capacity Utilization in Biomanufacturing, 2024	
		Capacity Utilization in Biomanufacturing, By System, 2024	
		Capacity Utilization Changes (2006-2024)	
		Average Growth Rate in Capacity Utilization (2006-2024)	
	4-2	Capacity Utilization: Biomanufacturers vs. CMOs	
	4-3	Capacity Utilization: U.S. vs. Western European Manufacturers	
		Historical 12-year US vs EU Trends in Capacity Utilization	
		Availability of CMO/CDMO Capacity	
	4-4	Respondents' Current Total Production Capacity	
		Mammalian Cell Culture Capacity	
		Microbial Fermentation Capacity	
		Cell Therapy Capacity	
		Gene Therapy Capacity	
	4-5	Global Bioreactor Capacity	
		The Largest Capacity Facilities	404

	Biopharmaceutical Capacity Expansions Continue	182
	Biopharmaceutical Developers/Manufacturers as CMOs	183
	Major CMOs in Terms of Facilities and Capacity	184
4-6	Range of Titers with mAb Production	185
	Annual mAb Titer Changes (2008-2024)	187
4-7	DISCUSSION: CAPACITY AND INDUSTRY TRENDS	189
	The Risks of Biomanufacturers Seeking to become a CMO	189
	Future Capacity Trends	190
	R 5: CURRENT AND FUTURE CAPACITY CONSTRAINTS AND	
•	Y FACTORS	
5-1	Current Capacity Constraints	
	Introduction	
	Current Capacity Constraints	
	Respondents Experiencing No Capacity Constraints (2004-2024)	
	Respondents' Perception of Capacity Constraints (2004-2024)	
	Differences in Capacity Constraints: Biomanufacturers vs. CMOs	
	Capacity Constraints: U.S. vs. Western European Biomanufacturers & CMOs	
5-2	Expected Capacity Constraints	
	Respondents' Expectations of Capacity Constraints in Five Years (2029)	
	Expected Capacity Constraints Five-year Projections (2004-2024)	202
	Expected Capacity Constraints in Five Years: Biomanufacturers vs. CMOs (2029)	204
	Expected Capacity Constraints in Five Years: U.S. vs. Western Europe (2029)	
5-3	Factors Impacting Future Production Capacity	
0-0	Factors Creating Future Capacity Constraints in Five Years (2029)	
	Factors Creating Future Capacity Constraints (2008-2024)	
	CMO Capacity Bottleneck Projections, in Retrospect	
	Biomanufacturers' Capacity Bottleneck Projections, in Retrospect	
	Factors Creating Capacity Constraints: U.S. vs. Western Europe Respondents	
5-4	Key Areas to Address to Avoid Future Capacity Constraints	
	Areas to Avoid Capacity Constraints: Changing Perspectives (2006-2024)	
	Key areas to Address to Avoid Capacity Constraints; Biomanufacturers vs. CMOs	
	Key Areas to Address to Avoid Capacity Constraints: U.S. vs. Western Europe	
5-5	Batch Failures in Biopharmaceutical Manufacturing	. 227
	Average Time Between Batch Failures (2009-2024)	
	Batch Failure Frequency Distribution (2009-2024)	
	Improving Failure Rates	
	Primary Cause of Batch Failures, Percentages of Failures	
5-6	Automation Implementation	238
	Demand for Automation	
	Automation Implementation	238
	Comparison of Implementation Plans (2009-2013, 2022-2024)	240

	5-7	Quality Problems in Biomanufacturing Attributed to Vendors	242
		Global Quality Supply Management (2023)	242
		Global Quality Supply Management (2011-2013, 2022-2023)	243
		Global Quality Supply Management Biomanufacturers vs. CMOs (2023)	245
		U.S. vs. W. Europe Global Quality Supply Management (2023)	246
		Addressing Supply Chain Security	247
	5-8	Discussion: Industry Trends	249
		Automation	249
		Single-use Systems	249
		Skilled Staff	249
CH/	APTE	R 6: PLANNED FUTURE CAPACITY EXPANSIONS	251
	6-1	Planned Future Capacity Expansions	251
		Industry Average Planned Production Increases, Five Years Estimates (2029)	
		Planned Future Capacity Expansions: Five Year Estimates (2009-2029)	253
	6-2	Planned Future Capacity Expansions for Biomanufacturers vs CMOs,	
		by System	255
		Planned Future Capacity Expansions for Biomanufacturers vs. CMOs,	
		Five Year Estimates (2029)	255
	6-3	Planned Future Capacity Expansions for U.S. vs. Western Europe,	050
		by System	256
		Planned Future Capacity Expansions for U.S. vs. Western European Manufacturers, Five Year Estimates (2029)	256
	6-4	Planned Future Capacity Expansions of >100%, by Systems	
	0-4	Planned Future Capacity Expansions of >100%, by Systems	
	6-5	Planned Future Global Capacity Expansions	
	0-0	Planned Future Global Capacity Expansions	200
		R 7: OUTSOURCING TRENDS IN BIOPHARMACEUTICAL ACTURING	262
WA	NOFF	Introduction	
		Why Outsource?	
		Strategic Manufacturing Planning	
		Future Projections	
	7-1	Current Outsourcing by Production System	
	7-1	Facilities Currently Outsourcing No Production (All Production "In-house")	200
		(2006-2024)	268
		Historical Trends in Outsourcing Production	
	7-2	Future Outsourcing	
		Biotherapeutic Developers' Outsourcing, 5-Year Projections, by System (2029)	
		Five Year Projections for Biomanufacturers Outsourcing Some Production	
	7-3	Outsourced Activities in Biopharmaceutical Manufacturing	
	. •	Comparison of Biomanufacturers' Outsourcing, (2010-2024)	
		Increased Outsourced Activities, 24-Month Projections	
		Outsourcing Activities Projected at 'Significantly Higher Levels' (2010-2024)	

	Average Percentage of Activities Outsourced Today, 2024	285
	Comparison of Outsourcing Activities (2010-2024)	287
	Change in Average Spending on Outsourcing Activities	290
	Average Change in Outsourcing Spending by Facilities (2013-2024)	292
7-4	CMOs' Problems with Their Clients	293
	CMOs Problems with Their Clients (2018 data)	293
7-5	Country Selections for International Outsourcing (Offshoring)	
	of Biomanufacturing	294
	Country Selections for International Outsourcing (Offshoring) of	
	Biomanufacturing, Over Five Years (2016-2024)	
	U.Sbased Companies Capacity Expansion Destinations	
	U.Sbased Companies Outsourcing Destinations	
	W. European – based Companies Capacity Expansion Destinations	
	W. European – based Companies Outsourcing Destinations	
7-6	Offshoring Trends to Lower-Cost Regions	312
	5-Year Projection for Biomanufacturing International Outsourcing /Offshoring	040
	to Lower-Cost Regions	312
	Five Year Projection for Biomanufacturing International Outsourcing/Offshoring to Lower-Cost Regions (2011-2024)	314
	Five Year Projection for Average Percentages of Biomanufacturing	
	International Outsourcing/Offshoring to Lower-Cost Regions (2011-2024)	316
	Outsourcing to New Regions (2020 data)	318
7-7	Discussion of Outsourcing and Offshoring	319
	Strategic Shifts in Outsourcing	319
	Future Projections	319
CHAPTE	R 8: DISPOSABLES AND SINGLE-USE SYSTEMS IN	
	RMACEUTICAL MANUFACTURING	.321
8-1	Use of Disposables and Single-Use Systems	
0.1	Disposables Applications in Biopharmaceutical Manufacturing	
	Trends in Disposable Applications (2006-2024)	
	Average Annual Growth Rate for Disposables: Market Penetration/Usage	
	18-Year Average Growth in Disposable Applications, Percentage-Point Gains	
	Disposable Use by Stage of Production/Application	
	Use of Disposables: Biomanufacturers vs. CMOs	
8-2	Leachables and Extractables	
0-2	Issues Related to Leachables and Extractables (2018 data)	
8-3	Reasons for Increasing Use of Disposables & Single-Use Systems	
0-3	Single Most Critical Reason for Increasing the Use of Disposables (2018 data)	
0.4		
8-4	Factors That May Restrict Use of Disposables	
	Most Critical Reasons for Restricting Use of Disposables (2019 data)	
	Most Important Reasons for Not Increasing Use of Disposables (2008-2019)	
	Cell-Culture Problems due to Single-Use Devices (2022 vs. 2021)	
	Recycling of Disposables (2020)	ఎఎర

xiv

	8-5	Single-Use Adoption Issues	. 340
		Evolution of SUS Adoption	. 340
		Single-use Failures by Timeframe and SUS Type	. 340
		Average Weeks Before Failures of Single-use Devices, 2023 vs 2024	. 342
	8-6	Need for Single-use Sensors, and Bioreactor Attributes	. 343
		Single-Use Sensor Technologies (2012-2017, 2019)	. 343
	8-7	Satisfaction with Single-Use Device Vendors (2008-2024)	. 346
		Single-Use Attribute Importance Analysis	. 348
		Single-Use Suppliers' Issues (2013-2024)	. 350
	8-8	Single-Use Operations and Trends	. 353
		Percentage of Unit Operations that are Single-Use (2014-2024)	. 353
		Percentage of Single-Use Device Usage in Biomanufacturing	. 355
	8-9	Discussion: Single-use Bioprocessing	. 357
		Single-use Advantages	. 357
		Growth in the Use of Single-use Systems	. 357
		Downstream Single-use Systems Usage	. 358
		CMOs' Use of Single-use Equipment	. 359
		Modular: The Next Trend after Single-Use?	. 359
		Single-use Equipment Sourcing, Quality Issues, and L&E Testing	. 360
CHA		R 9: DOWNSTREAM PURIFICATION	
	9-1	Impact of Downstream Processing on Capacity	
		Impact of Downstream Processing on Overall Capacity.	
		Impact of Downstream Processing on Capacity, Biomanufacturers vs. CMOs Impact of Downstream Processing on Capacity, U.S. vs. Western European	. 300
		Biomanufacturers Biomanufacturers	369
	9-2	Specific Purification Step Constraints	
	-	Changes in Impact on Capacity of Purification Steps (2008-2024)	
		Specific Purification Step Constraints, U.S. vs. Western European	. 07 0
		Biomanufacturers	. 374
	9-3	Downstream Purification Issues	. 377
		Protein A and Alternatives (2022 data)	. 377
		Changes in Perception of Protein A and Alternatives (2009-2017, 2020-2022)	. 378
		Protein A Downstream Purification Issues, U.S. vs. Western Europe (2022 data)	. 380
	9-4	mAb Purification Capacity Estimates	. 381
		Upstream Production Titer vs. Max Capacity	. 381
	9-5	New Downstream Processing Technologies	. 385
		New Downstream Processing Solutions (2010-2024)	. 387
		New Downstream Processing Technologies; Biomanufacturers vs. CMOs	. 390
		New Downstream Processing Technologies: U.S. vs. Western Europe	. 392
	9-6	Improvements to Downstream Operations	. 394
		Improving Downstream Operations (2019)	
	9-7	Discussion: Industry Trends	
		Upstream Expression Titer Trends and Impact on Downstream Operations	
		Downstream Processing Solutions	. 396

	R 10: HIRING, EMPLOYMENT GROWTH, AND TRAINING IN	401
DIOI IIAI	Industry Overview	
10-1	Hiring Trends	
10-1	Trends in New Hires, by Area (2008-2024)	
10-2	Five Year Trends in Hiring (2029)	
	Hiring Challenges Today	
10-0	Hiring Difficulties (2010-2024)	
	U.S. and Western Europe Hiring Difficulties	
10-4	Training in Biopharmaceutical Manufacturing	
	Skills or Hands-On Training Required in New Hires in GMP Bioprocessing	
10-5	Discussion: Strategies For Successful Employment Growth	
	Educational Programs	
	Strategic Trainings	
	Attractive Career Paths	417
_	R 11: NEW METHODS: CONTINUOUS AND PROCESS	
INTENSII	FICATION, CELL AND GENE THERAPIES	
	Introduction to Innovative Bioprocessing	
	Advanced Therapies	
	Improved, Continuous Bioprocessing	
11-1	Future Adoption of Continuous Bioprocessing and Process Intensifica	
	Future of Continuous Bioprocessing (2021-2024)	
11-2	Perfusion Operations and Continuous Bioprocessing Operational Issue	
	Perfusion Operation Issues (2010-2016, 2020, 2023-2024)	
	Perfusion vs. Batch Fed Bioprocessing – Areas of Much Bigger Concern	427
	Evaluating or Considering CBP technologies (Upstream) Over the Next 12 Months (2016-2024)	120
	Evaluating or Considering CBP technologies (Downstream)	429
	Over the Next 12 Months (2016-2024)	431
11-3	Cell and Gene Therapy Platforms	
	Cell Therapy Manufacturing Improvements, Systems, Platforms,	
	and Infrastructure (2019-2024)	433
	Gene Therapy Manufacturing Improvements, Systems, Platforms,	
	and Infrastructure (2019-2024)	436
	Advanced Therapy (Cell or Gene Therapy) GMP and Commercial	407
	Manufacturing (2020-2024).	437
	Cell Therapy Capacity Plans for In-House Bioprocessing Facilities: Five Year Estimates (2023-2024)	440
	Cellular Therapies Commercial Manufacturing Scales (2021)	
	Gene Therapy Vectors and Products Commercial Manufacturing Scales (2021)	
11.4	Discussion	
11-4	Continuous Bioprocessing and Perfusion Trends	
	Cell & Gene Therapy Manufacturing	

	R 12: SUPPLIERS TO BIOPHARMACEUTICAL MANUFACTURING E SCIENCES	449
	Introduction	
12-1	Demographics	.449
	Areas of Involvement	
	Location of Vendor Sales	.453
	Vendor / Supplier Respondents' Primary Job	.456
12-2	Growth Rate of Sales by Suppliers	.457
	Average Industry Growth Rate, By Segment	.459
	Supplier Annual Sales, Distribution	.462
12-3	Budget Issues and Problems Faced by Industry Suppliers	. 464
	Budget Challenges in 2024	.464
	Vendor Average Pricing Changes	.468
12-4	Problems Clients Have with Their Vendors	.472
	Quality of Business Relationships with Suppliers	.472
	Quality of Business Relationships with Clients	.474
	Quality Problems Traced to Vendors (2018 data)	.476
12-5	Impacts of COVID-19 on Suppliers' Activities	. 476
	Biopharma Industry's Response to COVID on Bioprocessing-Related	
	Business (2023 data)	
	Impact of COVID-19 Pandemic on Vendors, Percent Indicating an INCREASE in	
	COVID-Related Factors (2021-2023)	
	Biopharma Vendor Business Trends	
	Biopharma Vendor Business Trends (2010-2024)	
12-6	Vendors' Products and Services	
	New Technology Areas in Development by Vendors	
	Suppliers' R&D Spending/Budgets for New Products/Services	
	Average Annual Suppliers' R&D Spending/Budgets for New Products/Services	
	(2017-2022)	.490
12-7	Sales Staff Training	.492
	Days of Training Provided by Suppliers (2021 data)	. 492
	Areas where Training May Help Sales Staff Perform, Trends (2010-2024)	.492
	Clients' Demands on Vendors	.495
12-8	Biopharma Vendors' Financial Outlook for 2024	. 497
12-9	CMO Pricing Changes for Biopharmaceutical Services	.499
12-10	Discussion: Biopharma Suppliers	. 503
	Vendor and Industry Growth	
	Trends Favor Increased Vendor Sales	. 503
	Vendors are Offering More Services	. 504
	Biopharma Suppliers in Emerging Regions	505

FIGURES

Fig 0.1:	Area of Primary Involvement in Biopharmaceutical Manufacturing (2010-2024)	3
Fig 0.2:	Respondents' Job Responsibilities (2011-2024)	5
Fig 0.3:	Facility Location, 2024	
Fig 0.4:	Facility Location, by Region, 2024	
Fig 0.5:	Biopharmaceutical Manufacturing Systems, Trends (2007-2024)	10
Fig 0.6:	Phase of Development of Surveyed Respondents (2006-2024)	12
Fig 0.7:	Phase of Development of Surveyed Respondents, U.S. vs. Western Europe (2024)	1)13
Fig 0.8:	Distribution of Employees at Facility, and Organization, 2024	14
Fig 0.9:	Distribution of Total Batches Run at Facility in Past 12 Months, by Scale of Production (2024)	16
Fig 0.10:	Distribution of Largest SINGLE-USE Bioreactor Capacity, 2024	18
Fig 0.11:	L Average SINGLE-USE Bioreactor Volume (2017-2024)	19
Fig 0.12:	Distribution of Largest STAINLESS Bioreactor Capacity, 2024	20
Fig 1.1:	Top 50 Biopharmaceutical Products, Percentage of Total Market Revenue	33
Fig 2.1:	Numbers of Recombinant and Non-Recombinant Biopharmaceuticals Approved by FDA Since 1981	48
Fig 2.2:	Selected AreasSingle Most Important Biomanufacturing Trend or Operational Area Industry Must Focus Efforts (China, US, W. Europe, and ROW), 2024	56
Fig 2.3:	Average Cost per Gram for PRIMARY Recombinant Protein (by region, 2022 – 2024)	57
Fig 2.4:	Capacity Utilization, By System (China), 2022-2024	58
Fig 2.5:	Selected Areas: Percent Expecting "Some" Increase in Budgets for 2024 (Global)	59
Fig 2.6:	Selected Cost-Cutting Changes: Actions in "Past 12 Months" (Global), 2024	60
Fig 2.7:	Estimated Percentage of Facilities' Unit Operations that are "Single-Use" (Global), 2024	61
Fig 2.8:	Change in Spending on Outsourcing for R&D or Manufacturing, Next 12 Months (Global)	62
Fig 2.9:	EMA and FDA Approved Gene-Modified Cell Therapies - aka Ex-Vivo Gene Therapies- by Year of Approval And DP (Manufacturer)	65
Fig 2.10:	Overview of Common bsAb MoA (5)	68
Fig 2.11:	Designs of asymmetric Fc based bsAbs	69
Fig 3.1:	SINGLE Most Important Biomanufacturing Trend or Operational Area (2014-2024)	84
Fig 3.2:	Novel Bioprocessing Systems/Innovations to Evaluate in Next 12 Months (2018-2024)	86
Fig 3.3:	Novel Bioprocessing Systems/Innovations to Evaluate in Next 12 Months (Biomanufacturers vs. CMOs), 2024	
Fig 3.4:	Operational Changes Due to Recent Global Economics, 2024	92
Fig 3.5:	Operational Changes Due to Recent Global Economics (2010 - 2012, 2022-2024)	.94
Fig 3.6:	Operational Changes Due to Recent Global Economics; Biomanufacturers vs. CMOs, 2024	97
Fig 3.7:	Operational Changes Due to Recent Global Economics; U.S. vs. Western Europe, 2024	99
Fig 3.8:	Biomanufacturers' Budget Shifts, 2024	101
Fig 3.9:	Approximate Average Change in Biomanufacturers' Budgets, 2024	102
Fig 3.10:	Average Biomanufacturers' Budget Changes (2009-2024)	104

Fig 3.11:	New Expenditures Focus Areas, 2024	109
Fig 3.12:	New Expenditures Focus Areas (2020-2024)	111
Fig 3.13:	New Product Development-Upstream Focus Areas, 2024	113
Fig 3.14:	Upstream New Product Development Areas Cited Where Suppliers Should Focus Development Efforts (2010-2024)	
Fig 3.15:	Downstream New Product Development Areas Cited Where Suppliers Should Focus Development Efforts, 2024	117
Fig 3.16:	New Product Development – Downstream Focus Areas (2010-2024)	119
Fig 3.17:	New Product Development – General Focus Areas, Biomanufacturers & CMOs, 2024	121
Fig 3.18:	New Product Development – General Focus Areas (2010-2024)	123
Fig 3.19:	Top 10 New Product Development Areas of Interest: Biomanufacturers vs. CMOs, 2024	125
Fig 3.20:	Top 10 New Product Development Areas of Interest: U.S. vs. Western Europe vs. ROW, 2024	127
Fig 3.21:	Cost-Cutting Changes: Actions Undertaken During "Past 12 Months" Comparing (2011-2016, 2019-2024)	129
Fig 3.22:	Cost-Cutting Changes, Outsourced Jobs, by Segment, (2011-2016, 2019-2024)	131
Fig 3.23:	Factors That Will Have the Greatest Impact on REDUCING YOUR COST OF GOODS for Biotherapeutic Products (2020-2024)	132
Fig 3.24:	Distribution, Average Cost per Gram for PRIMARY Recombinant Protein, 2024	134
Fig 3.25:	Distribution, Average Cost per Gram for PRIMARY Recombinant Protein (2017-2024)	135
Fig 3.26:	Biomanufacturing Assay "Areas" Urgently Requiring New, Improved Testing Methods (2011-2015, 2018-2019, 2024)	137
Fig 3.27:	Biomanufacturing Assay 'Areas' Urgently Requiring New, Improved Testing Methods; Biomanufacturers vs. CMOs, 2024	139
Fig 3.28:	Biomanufacturing Assay 'Areas' Urgently Requiring New, Improved Testing Methods; US vs. Western Europe, 2024	141
Fig 3.29:	Largest Commercial-Scale Bioreactor Expected in the Next Two Years (2024) (2022 data)	142
Fig 3.30:	Top Options for Bioreactor Platforms at Commercial Scale, 2024	144
Fig 3.31:	Top Options for Bioreactor Platforms at Commercial Scale (2021-2024)	145
Fig 3.32:	Distribution of Largest Stainless Steel Bioreactor Capacity Next Two Years (2024) (2022 data)	146
Fig 3.33:	Distribution of Largest SINGLE-USE Bioreactor Capacity Next Two Years (2024)	
Fig 4.1:	Capacity Utilization, By System, 2024	154
Fig 4.2:	Capacity Utilization, By System (2006-2024)	156
Fig 4.3:	Change in Capacity Utilization, CAGR (2006-2024)	157
Fig 4.4:	Capacity Utilization, By System, Biomanufacturers vs. CMOs, 2024	159
Fig 4.5:	Capacity Utilization, By System, U.S. vs. Western Europe, 2024	160
Fig 4.6:	Western European vs US Biomanufacturers' Average Capacity Utilization (2012-2024)	162
Fig 4.7:	Availability of CMO/CDMO Capacity, 2024	
Fig 4.8:	Current Production Capacity Distribution, Mammalian Cell Culture, 2024	
Fig 4.9:	Production Capacity Distribution, Mammalian Cell Culture (2010-2024)	
Fig 4.10:	Current Production Capacity Distribution, Microbial Fermentation, 2024	
Fig 4.11	Current Production Capacity Distribution, Microbial Fermentation (2010-2024)	

Fig 4.12:	Current Production Capacity Distribution, Cell Therapy, 2024	173
Fig 4.13:	Production Capacity Distribution, Cell Therapy (2020-2024)	175
Fig 4.14:	Current Production Capacity Distribution, Gene Therapy, 2024	176
Fig 4.15:	Production Capacity Distribution, Gene Therapy (2010-2024)	178
Fig 4.16:	Bioprocessing Concentration, Capacity Data, 2024	180
Fig 4.17:	Range of Titers for mAbs Obtained at Various Production Scales, Distribution, 2024	186
Fig 4.18:	Average mAb Titer Trend (2008-2024)	188
Fig 5.1:	Capacity Constraints, by Stage of Production, 2024	194
Fig 5.2:	Capacity Constraints 'Today' (2004-2024)	196
Fig 5.3:	Capacity Constraints Trends (2004-2024)	
Fig 5.4:	Capacity Constraints, Biomanufacturers vs. CMOs, 2024	198
Fig 5.5:	Capacity Constraints, U.S. vs. Western Europe, 2024	200
Fig 5.6:	Expectations of Capacity Constraints by Stage of Production: Five-year Projections (by 2029)	201
Fig 5.7:	Expectations of Capacity Constraints: Five-year Projections (2004-2024)	203
Fig 5.8:	Expectations of Capacity Constraints: Five-year Projections (Trend Line) (2004-2024)	204
Fig 5.9:	Five-year Projections for Capacity Constraints: Biomanufacturers vs. CMOs (2029)	205
Fig 5.10:	Five-year Projections for Capacity Constraints: U.S. vs. Western Europe (2029)	206
Fig 5.11:	Factors Creating Future Capacity Constraints in Five Years (2029)	208
Fig 5.12A:	Factors Creating Future Capacity Constraints in Five Years (2008-2024)	210
Fig 5.12B:	Factors Creating Future Capacity Constraints in Five Years (2008-2024)	211
Fig 5.13:	Factors Creating Future Capacity Constraints: Biomanufacturers vs. CMOs, 2024	214
Fig 5.14:	Factors Creating Future Capacity Constraints, U.S. vs. Western Europe Biomanufacturers, 2024	217
Fig 5.15:	Key Areas to Address to Avoid Capacity Constraints, 2024	219
Fig 5.16A:	Key Areas to Address to Avoid Capacity Constraints (2006-2024)	221
Fig 5.16B:	Key areas to Address to Avoid Capacity Constraints (2006-2024)	222
Fig 5.17:	Key Areas to Address to Avoid Capacity Constraints; Biomanufacturers vs. CMOs, 2024	224
Fig 5.18:	Key Areas to Address to Avoid Capacity Constraints; U.S. vs. Western Europe, 2024	226
Fig 5.19:	Average Time (weeks) Between Batch Failures (2009-2024)	227
Fig 5.20:	Batch Failure Frequency Distribution (2009-2024)	230
Fig 5.21:	Average Rates of Failure, by Primary Cause, and Phase of Manufacture, 2024	233
Fig 5.22:	Average Rates of Failure, by Primary Cause, and Phase of Manufacturing (Commercial Manufacture) (2009-2024)	236
Fig 5.23:	Average Rates of Failure, by Primary Cause, and Phase of Manufacturing ("Clinical" Scale) (2009-2024)	237
Fig 5.24:	Automation Technologies Implemented/to be Implemented in 2024	239
Fig 5.25:	Automation Technologies to be Implemented; Comparing (2009 - 2013, 2022-2024)	241
Fig 5.26:	Global Quality Supply Management (2011-2013, 2022-2023)	244

Fig 5.27:	Global Quality Supply Management, Biomanufacturers vs. CMOs, 2023	.245
Fig 5.28:	Global Quality Supply Management (U.S. vs. W. Europe), 2023	.246
Fig 5.29:	Addressing Supply Chain Security (2023-2024)	.248
Fig 6.1:	Industry Average Planned Production Increase: Five Year Estimates (2029)	
Fig 6.2:	Planned Future Capacity Expansion: Five Year Estimates (2009–2029)	.254
Fig 6.3:	Planned Future Capacity Expansions: Five Year Estimates, Biomanufacturers vs. CMOs, by 2029	.255
Fig 6.4:	Planned Future Capacity Expansion: Five-Year Estimates, U.S. vs. Western Europe, by 2029	.257
Fig 6.5:	Percentage of Respondents Projecting Production Increases over 100%: Five Year Trend (2029)	.259
Fig 7.1:	Current Percent Production Outsourced; by System, 2024	.267
Fig 7.2:	Biopharmaceutical Manufacturing Facilities Outsourcing NO Production (2006-2024)	.269
Fig 7.3:	Current Percent Respondents Outsourcing up to 50% of Production, by System, 2009-2024	
Fig 7.4:	Biomanufacturers' Outsourcing, Five Year Projections, by System (2029)	.272
Fig 7.5:	Five Year Projections: % Biotherapeutic Developers Planning to Outsource at Least Some Production; Projections made 2007-2024	.274
Fig 7.6:	Biomanufacturers Outsourcing Some Activity Today, 2024	.276
Fig 7.7A:	Percent of Biomanufacturers Outsourcing at Least Some Activity Today (2010-2024)	.278
Fig 7.7B:	Percent of Biomanufacturers Outsourcing at Least Some Activity Today (2010-2024)	.279
Fig 7.8:	Outsourcing Activities Projected to be Done at 'Significantly Higher Levels' in 2 Years (2024)	.281
Fig 7.9A:	Outsourcing Activities Projected to be Done at 'Significantly Higher Levels' in 2 Years, Trends (2010-2024)	
Fig 7.9B:	Outsourcing Activities Projected to be Done at 'Significantly Higher Levels' in 2 Years, Trends (2010-2024)	
Fig 7.10:	Estimated Average Percentage of Activity Outsourced, by Facilities Today, 2024	
Fig 7.11A:	Estimated Average Percent of Activity Outsourced, by Facilities (2010-2024)	
Fig 7.11B:	Estimated Average Percent of Activity Outsourced, by Facilities (2010-2024)	.289
Fig 7.12:	Change in Spending on Outsourcing for R&D or Manufacturing, Next 12 months (2012-2024)	.291
Fig 7.13:	Average Change in Outsourcing Spending by Facilities (2013-2024)	.292
Fig 7.14:	Percent Indicating USA as Likely or Strong Likely Selection for INTERNATIONAL (non-US respondents) Outsourcing Over Next Five Years, 2009-2024 (targeting 2029)	
Fig 7.15:	Country Selections for International Outsourcing/Capacity Expansion	.296
Fig 7.16A:	Country Selections for "Possible" International Outsourcing/Capacity Expansion Over Next Five Years (2016-2024)	.298
Fig 7.16B:	Country Selections for "Possible" International Outsourcing/Capacity Expansion Over Next Five Years (2016-2024)	.299
Fig 7.17A:	U.S. Respondents Considering International Country as "Possible" International Outsourcing Destination, over Next Five Years (2009-2024)	.302
Fig 7.17B:	U.S. Respondents Considering International Country as "Possible" International Outsourcing Destination, over Next Five Years (2009-2024)	

Fig 7.18:	U.S. Respondents Considering Country as "Strong likelihood" or "Likelihood" as Outsourced Capacity Destination, Next Five Years (2029)	.305
Fig 7.19A:	Western European Respondents Considering Country as "Possible" Outsourcing Destination, Next Five Years, (2009-2024)	.307
Fig 7.19B:	Western European Respondents Considering Country as "Possible" Outsourcing Destination, Next Five Years, (2009-2024	.308
Fig 7.20:	Western European Respondents Considering Country as 'Strong likelihood' or 'Likelihood' as Outsourced Capacity Destination, over Next Five Years (2029)	.310
Fig 7.21:	Percent of Biomanufacturing Operations Offshored (International Outsourcing) to Lower-Cost Regions Within Five Years (2029)	.313
Fig 7.22:	Biomanufacturers Performing at Least "Some" International Outsourcing/Offshori Over Next Five Years (2011-2024)	
Fig 7.23:	Estimated Average Percentage of Operations to be Done as International Outsourcing/Offshoring to Lower-Cost Regions During Next Five Years (2011-2024)	317
Fig 8.1:	Usage of Disposables in Biopharmaceutical Manufacturing, Any Stage of R&D or Manufacture, 2024	323
Fig 8.2A:	Usage of Disposables in Biopharmaceutical Manufacturing, Any Stage of R&D or Manufacture (2006-2024)	.325
Fig 8.2B:	Usage of Disposables in Biopharmaceutical Manufacturing, Any Stage of R&D or Manufacture (2006-2024)	.326
Fig 8.3:	Average Annual Growth Rate, Disposables (2006-2024)	
Fig 8.4:	18-Year Percentage-Point Increase in First Usage of Disposables (2006-2024)	.331
Fig 8.5:	Usage of Disposables in Biomanufacturing by Stage of Manufacture (R&D–Commercial), 2024	333
Fig 8.6:	Usage of Disposables in Biopharmaceutical Manufacturing: Biomanufacturers vs. CMOs, 2024	.335
Fig 8.7:	Cell Culture Problems Due to Single-Use Devices (2022 vs. 2021)	.338
Fig 8.8:	Single-use Recycling; Respondents' Desires for Disposal vs. Actual Disposal Process (2020 data)	.339
Fig 8.9:	Time Since Facility's Last Failure of Single-use Devices and Equipment, 2024	.341
Fig 8.10:	Average Weeks Before Failures of Single-use Devices and Equipment (2023-2024)	.343
Fig 8.11:	Need for Improved Single-Use Sensors (2012-2017, 2019) (2019 data)	.345
Fig 8.12:	Single-Use Product Vendor Satisfaction Factors (2008-2024)	.347
Fig 8.13:	Importance of Single-Use Product Attributes vs. Level of Vendor Satisfaction, 202	24349
Fig 8.14:	Percentage Point Gap between Importance of SUS Product Attributes and Level of Satisfaction (2013-2024)	.352
Fig 8.15:	Estimated Percentage of Facilities' Unit Operations that Are "Single-Use" (2014-2024)	.354
Fig 8.16:	Distribution of Responses, % Single-Use Devices in Biomanufacturing, 2024	.356
Fig 9.1:	Impact of Downstream Processing on Overall Capacity (2008-2024)	.366
Fig 9.2:	Impact of Downstream Processing on Overall Capacity; Biomanufacturers vs. CMOs, 2024	.368
Fig 9.3:	Impact of Downstream Processing on Overall Capacity; U.S. vs. Western Europe, 2024	.370
Fig 9.4:	Impact on Capacity of Depth, Chromatography and UF Purification Steps, 2024	.372
Fig 9.5:	Impact on Capacity of Purification Steps: Experiencing at 'Significant' or 'Severe' Constraints (2008-2024)	

xxii

Fig 9.6:	Impact on Capacity of Purification Steps, U.S. vs. Western Europe, 2024	376
Fig 9.7:	Issues Regarding Protein A Usage (2022)	377
Fig 9.8:	Issues Regarding Protein A Usage (2009-2017, 2020-2022)	379
Fig 9.9:	Issues Regarding Protein A Usage; U.S. vs. Western Europe (2022)	380
Fig 9.10:	mAb Operations: Upstream Production Titer (Distribution of Responses (2014 -2016, 2018-2024)	382
Fig 9.11:	Bioreactor Output at which DOWNSTREAM Purification Train Becomes Bottlenecked (2014-2016, 2018-2024)	384
Fig 9.12:	New Downstream Processing Solutions, 2024	386
Fig 9.13A:	New Downstream Processing Solutions Comparison (2010-2024)	388
Fig 9.13B:	New Downstream Processing Solutions Comparison (2010-2024)	389
Fig 9.14:	New Downstream Processing Solutions: Biomanufacturers vs. CMOs, 2024	391
Fig 9.15:	New Downstream Processing Solutions: U.S. vs. Western Europe, 2024	393
Fig 9.16:	Improving Downstream Operations, 2011-2019 (2019 data)	395
Fig 10.1:	New Hires in Biopharmaceutical Manufacturing, 2024	
Fig 10.2:	Estimated Hiring, by Area (2008-2024)	
Fig 10.3:	New Hires in Biopharmaceutical Manufacturing in Five Years (2029)	
Fig 10.4:	Areas Where Hiring Difficulties Exist in Biopharmaceutical Operations, 2024	
Fig 10.5A:	Areas Where Hiring Difficulties Exist in Biopharmaceutical Operations (2010-2024)	-
Fig 10.5B:	Areas Where Hiring Difficulties Exist in Biopharmaceutical Operations (2010-2024)	1)41
Fig 10.6:	Areas Where Hiring Difficulties Exist in Biopharmaceutical Operations, U.S. vs. Western Europe, 2024	413
Fig 10.7:	Skills or Hands-On Training Required in NEW HIRES in GMP Bioprocessing (2023 vs. 2024)	415
Fig 11.1:	Future of Continuous Bioprocessing and Process Intensification, 2024	422
Fig 11.2:	Future of Continuous Bioprocessing and Process Intensification (2021-2024)	
Fig 11.3:	Perfusion Operations Issues (2010 – 2016, 2020, 2023-2024)	
Fig 11.4:	Concerns Over Perfusion Processes vs. Batch-fed Processes in Bioprocessing, 2024	
Fig 11.5:	Facilities Evaluating CBP Technologies Over the Next 12 Months (Upstream)	430
Fig 11.6:	Facilities Evaluating CBP Technologies Over Next 12 months (Downstream) (2016-2024)	
Fig 11.7:	Most Needed Cell Therapy Manufacturing Improvements, Systems, Platforms, and Infrastructure (2019-2024)	
Fig 11.8:	Most Needed Gene Therapy Manufacturing Improvements, Systems, Platforms and Infrastructure (2019-2024)	
Fig 11.9:	Cell or Gene Therapy Plans for GMP and Commercial Manufacturing (2020-2024)	
Fig 11.10:	Cell Therapy Capacity Plans for In-House Bioprocessing Facilities Next Five Years (2029)	
Fig 11.11:	Commercial Manufacturing of Cell Therapies (2021)	
Fig 11.12:	Commercial Manufacturing of Gene Therapy Vectors and Products (2021)	
Fig 12.1:	Area of Biopharmaceutical Involvement, Vendor, 2024	450
Fig 12.2:	Area of Biopharmaceutical Involvement, Vendor (2010-2024)	
Fig 12.3A:	In Which Geographic Regions/Countries Does Your Company Currently Actively Sell (2008-2024)	

Fig	12.3B:	In Which Geographic Regions/Countries Does Your Company Currently Actively Sell (2008-2024)	.455
Fig	12.4:	Vendor Respondents' Primary Job Function, 2024	
Fig	12.5:	Average Annual Vendor Sales Growth Rate (2007-2024)	.457
Fig	12.6:	Biopharmaceutical Supply Market Segment Sales Growth Distribution, 2024	.458
Fig	12.7:	Average Annual Vendor Segment Sales Growth Rates, 2024	
Fig	12.8:	Average Annual Vendor Sales Growth Rate, by Segment (2007-2024)	.461
Fig	12.9:	Vendors' Approx. Annual Sales to Biopharmaceutical Segment % (2012-2024)	.463
Fig	12.10:	Vendors' Average Budget Change, 2024	.465
Fig	12.11:	Vendors' Average Budget Change, Summary (2009-2024)	.467
Fig	12.12:	Vendors' Average Pricing Changes, Last Year (2024 data)	.468
Fig	12.13:	Vendors' Average Pricing Changes (2009-2023 Actual and 2024 projected)	.471
Fig	12.14:	'Most Important' Factors to Measure The 'Quality' of Business Relationships with Suppliers, 2022-2024	.473
Fig	12.15:	Factors Important in Measuring the 'Quality' of Business Relationships, Suppliers Perspective vs. Facility Perspective, 2024	.475
Fig	12.16:	Impact of COVID-19 Pandemic on Vendors, Percent Indicating an INCREASE in COVID-Related Factors (2023-2021)	.477
Fig	12.17:	Post COVID Impact on Suppliers: Permanent Changes caused by Pandemic on Your Business Operations, 2024	.479
Fig	12.18:	Biopharma Business and Marketing Plans, 2024	.482
Fig	12.19:	Biopharma Business and Marketing Plans (2010-2024)	.484
Fig	12.20A:	Top New Technologies or New Product Development Areas (2011-2024)	.486
Fig	12.20B:	Top New Technologies or New Product Development Areas (2011-2024)	.487
Fig	12.21:	R&D Spending/Budgets for New Products/Services, 2024	.490
Fig	12.22:	Approximate Average Annual R&D Spending/Budget for New Products/Services (2017-2024)	.491
Fig	12.23:	Areas Where Training is Considered as Needed, All Vendor Respondents (2010-2024)	.494
Fig	12.24:	Client Demands of Vendors, Service and Support (2012-2024)	.496
Fig	12.25:	Vendors Views of Financial (Sales) Outlook for Next Year (2011-2024)	.498
Fig	12.26:	Average CMOs Service Price Shifts over the Past 12 Months, 2024	.500
Fig	12.27:	CMOs Service Price Shifts Over Past 12 Months, Distribution, 2024	.502
T/	BLE	S	
Tab	le 0.1:	Areas of Biopharmaceutical Manufacturing Operations (2018-2024)	9
Tab	le 1.1	Worldwide Revenue of Biopharmaceuticals (\$USD billions)	25
Tab	le 1.2	Number of Biopharmaceutical Products in U.S. and European Markets, 2023/2024	30
Tab	le 1.3	Global Market for Top 50 Biopharma Products in (2022-2023, \$USD Million)	31
Tab	le 1.4	Top 50 Biopharmaceutical Products Vs. Total Market Size (%) \$mm	33
Tab	le 1.5	Bioprocess Related Industry Expenditures on Manufacture of Biotherapeutics (estimated \$USD, billions)	34
Tab	le 1.6	Summary of Worldwide Biopharmaceutical Revenue Growth by Product Class, 2007 and 2024	38
Tab	le 2.1:	Biopharmaceuticals Approved by FDA, 2023	49
Tab	le 2.2:	Biopharmaceuticals Approved by FDA in 2024 (till 10 June'24)	

Table 2.3:	All FDA/ EMA Approved or Pre-Registered In-Vivo Gene Therapies and Their Manufacturers	63
Table 2.4:	All FDA/ EMA Approved or Pre-Registered Gene-Modified Cell Therapies and Their Manufacturers	64
Table 2.5:	Approved bsAb (1)	67
Table 2.6:	Approaches Enforcing HC Heterodimer Formation	71
Table 2.7:	Approaches Minimizing HC-LC Mispairing	72
Table 2.8:	Purification Strategies To Eliminate Product Related Impurities (40)	72
Table 3.1	Areas of Significant Projected Budget Percentage Increases for Biomanufacturing (2011-2024)	
Table 4.1	Leading Biopharma Company Capacity Estimates, 2024	180
Table 4.2:	Regional Distribution of Total Worldwide Average Capacity*	182
Table 4.3:	Bioprocessing CMOs, Their Number of Facilities Worldwide and Estimated Total Capacity*	101
Table 4.4	Compound Annual Change in mAb Titers (2008-2024)	
Table 5.1	Severe or Significant Capacity Constraints, by Stage of Production (2009-2024)	193
Table 5.2:	Severe and Significant Capacity Constraints Today, U.S. vs. W. Europe (2010-2024)	199
Table 5.3:	Average Rates of Failure, by Primary Cause, and Phase of Manufacture (2017-2024)	234
Table 6.1:	U.S. Biomanufacturers' Five-Year Projected Capacity Increases, by System (2008-2024)	256
Table 6.2:	Western European Biomanufacturers' Five-Year Projected Capacity Increases, by System (2008-2024)	257
Table 6.3:	Future Capacity Expansions Coming Online in the Next 24 Months	260
Table 7.1:	Percentage of U.Sbased Respondents Indicating Country as a 'Strong likelihoo' or 'Likelihood' as Outsourcing Destination (2009-2024)	
Table 7.2	Percent of Western European-based Respondents Indicating International Countries as a 'Strong likelihood' or 'Likelihood' as Outsourcing Destination (2011-2024)	311
Table 9.1	Percent of Biomanufacturers vs. CMO Facilities experiencing "Serious" or "Some Capacity Problems due to Downstream Processing (2008-2024)	
Table 9.2	Percent of U.S. vs. Western Europe Facilities Experiencing 'Serious' Capacity Problems due to Downstream Processing (2009-2024)	369
Table 9.3	Percent U.S. vs. Western Europe Facilities Not Expecting to see Bottlenecks due to Downstream Processing (2008-2024)	369
Table 9.4	Upstream Production Titer vs. Max Capacity (2018-2024)	381
Table 12 1	Average Vendor Sales and Technical Training Days (2011-2013, 2019-2021)	492

METHODOLOGY

This report is the 21st in our annual evaluations of the state of the biopharmaceutical manufacturing (bioprocessing) industry. The strength of this study's methodology remains in its breadth of coverage, which yields a composite view from the respondents closest to the industry, its 21-year longevity, industry familiarity and high response rates. These permit a consistent approach which delivers reliable data and analysis.

Note, "biopharmaceutical" here refers to the classic biotechnology-grounded definition: involving manufacture of pharmaceuticals using biotechnology/bioprocessing. The term does not refer to the entire pharmaceutical industry or just those parts considered innovative, with "biopharmaceutical" now simply commonly substituted where "pharmaceutical" or "drug" were formerly used.

This year, BioPlan Associates, Inc. surveyed 220 qualified and responsible individuals at biopharmaceutical manufacturers and contract manufacturing organizations in 23 countries plus 179 industry vendors and direct suppliers of materials, services, and equipment to this industry segment. Using a web-based survey tool, we obtained and evaluated information including regarding respondents' current capacity, production, novel technology adoption, human resources, quality, and outsourcing issues. We also assessed respondents' projected reasons for bottlenecks, and their perception of how these bottlenecks might be resolved.

This year, we continue to include new questions and chapters, including Continuous Bioprocessing and Process Intensification (Chapter 11.) Over the past few years, advances in technologies, platforms, expression systems, and single-use applications have increasingly made the bioprocessing segment an area of interest for such innovation.

We continue to partner with worldwide media and membership organizations to ensure a high response rate, and the most accurate overview of the worldwide biopharmaceutical industry and its bioprocessing sector. Our industry partners are cited in our acknowledgments section. In addition, to supporting this coverage, we also acknowledge our media partners, whose assistance enables us to reach the many high-quality respondents required for this quantitative survey and analysis.

Further information on methodology, breakouts on specific segments, and data from earlier surveys, may be requested by contacting us at the address below.

Thank you for your participation and interest in this important research.

Eric S. Langer
President
BioPlan Associates, Inc.
One Research Court, Ste. 450
Rockville, MD 20850
+1 301-921-5979
elanger@bioplanassociates.com
www.bioplanassociates.com

CHAPTER 0: DEMOGRAPHICS

INTRODUCTION

his consulting report presents a comprehensive analysis based on survey responses from a diverse group of senior managers, executives, and scientists involved in biopharmaceutical development and manufacturing. These respondents represent a wide spectrum of roles within the industry, including those from Contract Manufacturing Organizations (CMOs) and Contract Development and Manufacturing Organizations (CDMOs).

Now in its 21st year, this international project is conducted annually, gathering insights from professionals at organizations around the globe. This year's survey includes contributions from individuals in 23 countries, ensuring a truly global perspective.

In addition to the general survey results, Chapter 12 specifically focuses on responses from bioprocessing suppliers and vendors. As in previous years, the survey captures data from companies of various sizes and types worldwide. All respondents have a direct involvement in bioprocessing and manufacturing, providing a well-rounded view of the industry's current state and future trends.

The diversity of the respondents enriches the report, offering an inclusive view of the biopharmaceutical sector. The experienced professionals who participated are deeply involved in the management of biopharmaceutical manufacturing activities globally. The insights gathered from these surveys reflect both current perspectives within the industry and projections for its future trajectory.

The report further categorizes data by organization type, distinguishing between CMOs and biotherapeutic manufacturers/therapeutic developers. This classification allows for a detailed analysis of the unique challenges and opportunities within these two major segments of the industry. Topics such as business drivers, risk profiles, and costs of capital are thoroughly examined for each organization class, providing valuable insights for stakeholders.

By presenting this data, we aim to offer a detailed understanding of the biopharmaceutical industry's dynamics, informed by the expertise of those who are actively shaping its future.

0-1 RESPONDENTS' AREA OF INVOLVEMENT

For this year's 2024 survey, we asked respondents in which area of biopharmaceutical manufacturing is your organization currently involved.

Of the biopharmaceutical manufacturers and contract manufacturing organizations responding to this year's survey:

- 26.4% were primarily involved in *Large-scale cell culture production for therapeutics*, down slightly from 28.0% in 2023
- 19.1% were primarily involved in *Process development for biopharmaceutical manufacturing*, down from 26.1% in 2023

15.9% were in *Scale-up (or clinical-scale) production of biopharmaceuticals primary*, up from 12.6% in 2023 and higher than 13.5% in 2022

Respondents involved with *Large-scale contract manufacturing (CMO)* for biopharmaceuticals continue to vary each year, with 12.7% in 2024 survey, up from 10.6% in 2023, and still relatively consistent with prior years. *Fill/Finish operations* continue to ebb and flow with respondents, with 2.3% this year, slightly down 3.9% in 2023.

Vaccine production respondents had a small increase to 6.8%, from 5.8% in 2022, but still overall down from levels reported in the mid-2010s.

This year saw a big decrease with process development respondents, and an uptick with scale-up (clinical-scale) production respondents. *Vaccine production* and *large-scale microbial fermentation for therapeutic respondents* saw virtually no change from 2023.

For Ordering Information on the Full Report

Contact BioPlan Associates, Inc. +1 301-921-5979

www.bioplanassociates.com/21st

Twenty-First Annual Report and Survey of Biopharmaceutical Manufacturing Capacity and Production

Another report in the BioPlan Associates, Inc's biopharmaceutical series:

- Top1000 Global Biomanufacturing Facilities Global analysis and ranking of capacity, employment, and pipelines, www.top1000bio.com
- Top200 Cell and Gene Facility Index and Biomanufacturers Subscription Database Global analysis and ranking of dedicated Cell and Gene Therapy facilities, top200cellgene.com
- Top300Bio CDMO Facility Index and Biomanufacturers Subscription Database Global analysis and ranking of capacity, employment and pipeline for CDMOs, top300cdmo.com
- Growth of Biopharmaceutical Contract Manufacturing Organizations in China: An In-depth Study of Emerging Opportunities, 2020
- Top 60 Distributors of Bioprocessing Supplies in China: Opportunities for Global Biopharma Suppliers to Find and Manage Local Distributors in China, 2020
- Top 100 Biopharmaceutical Organizations in China, Online Database
- Advances in Biopharmaceutical Technology in China, 2nd Ed., Soc. Ind. Microbiology, Biotech
- Quick Guide to Clinical Trials, 2nd Ed.
- Biosimilars Pipeline Database, http://www.biosimilarspipeline.com/index.html
- Biopharmaceutical Expression Systems and Genetic Engineering Technologies
- Advances in Biopharmaceutical Manufacturing and Scale-up Production, Amer. Soc. Micro.
- Biopharmaceutical Products in the U.S. and European Markets, 8th Ed.
- Advances in Biopharmaceutical Technology in India
- Top 60 Biopharmaceutical Organizations in India
- Quick Guide to Biotechnology in the Middle East
- Quick Guide to Biofuels

The 21st Annual Report and Survey of Biopharmaceutical Manufacturing Capacity and Production is the most recent study of biotherapeutic developers and contract manufacturing organizations' current and projected future capacity and production. The survey includes responses from 220 responsible individuals at biopharmaceutical manufacturers and contract manufacturing organizations from 23 countries. The survey methodology includes input from an additional 179 direct suppliers of raw materials, services, and equipment to this industry. In addition to current capacity issues, this study covers downstream processing problems, new technologies, expression systems, quality initiatives, human resources and training needs of biopharmaceutical manufacturers, growth rates of suppliers to this industry, and many other areas.

Copyright $\ensuremath{\texttt{@}}$ 2024 by BioPlan Associates, Inc.

April 2024

ISBN 978-1-934106-50-1

