

APRIL 2019

LRENDS AND ANALL

PHARN

SIXTEENTH ANNUAL **Report and Survey of Biopharmaceutical Manufacturing Capacity** and Production

A Study of Biotherapeutic **Developers** and **Contract** ÷1 Manufacturing **Organizations**

INSTITUTION PARTNERS

PB OA ARMA & BIOPHARMA

ncbio

North Carolina Biotechnology Center

MEDIA PARTNERS

Review

BioPharm

ONLINE

CONTRACT PHARMA

Pharmaceutical echnology

BioProcess International

BIOPROCESS

PALL

PharmaManufacturing.com

SIXTEENTH ANNUAL Report and Survey of Biopharmaceutical Manufacturing Capacity and Production

A Study of Biotherapeutic Developers and Contract Manufacturing Organizations

April 2019

BioPlan Associates, Inc. 2275 Research Blvd., Suite 500 Rockville, MD 20850 USA 301.921.5979 www.bioplanassociates.com

Copyright ©2019 by BioPlan Associates, Inc. All rights reserved. Unauthorized reproduction strictly prohibited.

16th Annual Report and Survey of Biopharmaceutical Manufacturing Capacity and Production

A Study of Biotherapeutic Developers and Contract Manufacturing Organizations

April 2019

BioPlan Associates, Inc. 2275 Research Blvd, Suite 500 Rockville MD 20850 301-921-5979 www.bioplanassociates.com

Copyright © 2019 by BioPlan Associates, Inc.

All rights reserved, including the right of reproduction in whole or in part in any form. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the publisher.

For information on special discounts or permissions contact BioPlan Associates, Inc. at 301-921-5979, or info@bioplanassociates.com

Managing Editor: Donnie E. Gillespie Senior Contributor and Reviewer: Ronald A. Rader Assistant Editors: Alla Rutstein Bobbitt, Ilene Roizman Layout and Cover Design: ES Design

ISBN 978-1-934106-36-5

ACKNOWLEDGMENT

We wish to acknowledge the contributions of our authors and *Subject Matter Experts*. Without their thorough analysis of the data, this project would not have been possible:

- Patrick Evrard, Senior Principal Engineer Single -Use Technologies, Technical Communication and Regulatory Strategy, Pall Biotech
- Paul Spencer, Owner, PharmaMercenary
- Stefan Schmidt, COO/Head of Operations, BioAtrium AG
- Christoph Winterhalter, Senior Vice President, Business Development, AGC Biologics

We would also like to recognize our *Institution Partners*, and our Media Sponsors. Their efforts in assuring the cooperation and participation in the survey of their respective memberships helped guarantee the large group of survey participants to ensure data accuracy.

Our Institution Partners, all of whom contributed their time and effort to ensure the broad, international coverage of this project, include:

- AusBiotech (Malvern, Victoria, Australia)
- BIO (Biotechnology Industry Organization, Washington, D.C.)
- BioMaryland (Baltimore, MD)
- Bio-Process Systems Alliances/SOCMA (BPSA) (Washington, D.C.)
- bioLIVE, adjacent to CPhI Worldwide (Madrid, Spain)
- BioMaryland (Rockville, MD)
- Bio-Process Systems Alliance (BPSA) (Arlington, VA)
- California Life Sciences Association (CLSA) (San Francisco, CA)
- D2L Pharma (Bangalore, India)
- North Carolina BioSciences Organization (Research Triangle Park, NC)
- North Carolina Biotechnology Center (Research Triangle Park, NC)
- Pharma & Biopharma Outsourcing Association (PBOA) (Ringwood, NJ)

To ensure global coverage for this project, we again invited major *Media Sponsors* to support our outreach to biopharmaceutical decision-makers. Our media sponsors, who helped ensure broad and representative coverage of industry participation, include:

- American Pharmaceutical Review (South San Francisco, CA)
- BioPharm International (Iselin, NJ)
- BioProcess International (Westborough, MA)
- BioProcess Online (Eric, PA)
- Contract Pharma (Ramsey, NJ)
- Pharmaceutical Manufacturing (Schaumburg, IL)
- Pharmaceutical Technology (Iselin, NJ)
- Pharmaceutical Technology Europe (Iselin, NJ)

The early participation of our authors and sponsors in evaluating the areas and trends to be surveyed this year ensured the project was designed to cover the most relevant issues in biopharmaceutical manufacturing today. As always, their continued support was critical to the success of the project.

Eric S. Langer Editor

ABOUT BIOPLAN ASSOCIATES, INC.

BioPlan Associates, Inc. is a biotechnology and life sciences market analysis, research, and publishing organization. We have managed biotechnology, biopharmaceutical, diagnostic, and life sciences research projects for companies of all sizes for almost 30 years. Our extensive market analysis, research and management project experience covers biotechnology and biopharmaceutical manufacturing, vaccine and therapeutic development, contract research services, diagnostics, devices, biotechnology supply, physician office labs and hospital laboratory environments.

We prepare custom studies, and provide public information our clients require to make informed strategic decisions, define objectives, and identify customer needs. With market information, our clients are better able to make informed, market-based decisions because they understand the trends and needs in high technology industries.

BioPlan Associates, Inc. 2275 Research Blvd., Suite 500 Rockville, MD 20850 USA www.bioplanassociates.com Tel: 301-921-5979

ABOUT THE AUTHORS: (ALPHABETICAL)

Patrick Evrard, Senior Principal Engineer Single-Use Technologies, Technical Communication and Regulatory Strategy

Patrick Evrard joined Pall Biotech in 2017, as Senior Director, SLS Single-Use Technologies, to manage the technical team providing expert technical support to Pall Biotech's customers. Before joining Pall, he led for more than 10 years a global technical team in charge of developing and implementing single-use technologies in GSK Vaccines' commercial manufacturing operations. Patrick and his team implemented at global level single-use technologies in critical sterile applications and re-engineered several vaccines processes, switching from classical grade A open processes to closed systems. Mr. Evrard has written and contributed to several articles and white papers on single-use technologies, was part of the Board of Directors of the Bio-Process Systems Alliance (BPSA). He has been participating since 2012 in several single-use technology industry work groups, from BPSA, BioPhorum Operations Group (BPOG), American Society of Mechanical Engineers (ASME BPE) and ASTM International.

Stefan R. Schmidt, COO/Head of Operations, BioAtrium AG

Dr. Stefan R. Schmidt currently serves as COO/Head of Operations at BioAtrium AG, a Lonza and Sanofi JV in Switzerland. Previously he held the position as CSO and other senior executive roles at Rentschler Biopharma with overall responsibilities for development, production and innovation. Before that, he was CSO at ERA Biotech in Barcelona, directing the company's R&D efforts. Prior to that, he worked at AstraZeneca in Sweden where he led the unit of Protein Sciences as Associate Director. He started his leadership career in Munich more than 20 years ago where he built up protein biochemistry teams for Connex and GPC-Biotech. During his academic education he earned a PhD in Biochemistry and an MBA in Marketing.

Paul Spencer, Owner, PharmaMercenary

Paul Spencer has a BS in Chemical Engineering, an MBA, and is a licensed PE in two states. Mr. Spencer started his career in the fermentation and purification of Monoclonal Antibody based diagnostic products. This included work conjugating MAbs to diagnostic markers. Later work has involved research to commercials manufacturing of innovative therapies, as well as high volume/high completive products. Mr. Spencer has 35 years of technical experience in a many of the therapeutic facilities. He provides a highly technical capability to those pharmaceutical units due to his 35 years of experience. He is a person that has been involved in significant improvements to the marketplace, often considered a thought leader in multiple unit operations and technological developments.

Christoph Winterhalter, Senior Vice President, Business Development, AGC Biologics

Dr. Christoph Winterhalter has 24 years of experience in Life Science and serves currently as Senior Vice President Business Development at AGC Biologics, a global biopharmaceutical CDMO with sites in US, EU and Japan. Before that he was heading

ABOUT THE AUTHORS: (ALPHABETICAL)

Patrick Evrard, Senior Principal Engineer Single-Use Technologies, Technical Communication and Regulatory Strategy

Patrick Evrard joined Pall Biotech in 2017, as Senior Director, SLS Single-Use Technologies, to manage the technical team providing expert technical support to Pall Biotech's customers. Before joining Pall, he led for more than 10 years a global technical team in charge of developing and implementing single-use technologies in GSK Vaccines' commercial manufacturing operations. Patrick and his team implemented at global level single-use technologies in critical sterile applications and re-engineered several vaccines processes, switching from classical grade A open processes to closed systems. Mr. Evrard has written and contributed to several articles and white papers on single-use technologies, was part of the Board of Directors of the Bio-Process Systems Alliance (BPSA). He has been participating since 2012 in several single-use technology industry work groups, from BPSA, BioPhorum Operations Group (BPOG), American Society of Mechanical Engineers (ASME BPE) and ASTM International.

Stefan R. Schmidt, COO/Head of Operations, BioAtrium AG

Dr. Stefan R. Schmidt currently serves as COO/Head of Operations at BioAtrium AG, a Lonza and Sanofi JV in Switzerland. Previously he held the position as CSO and other senior executive roles at Rentschler Biopharma with overall responsibilities for development, production and innovation. Before that, he was CSO at ERA Biotech in Barcelona, directing the company's R&D efforts. Prior to that, he worked at AstraZeneca in Sweden where he led the unit of Protein Sciences as Associate Director. He started his leadership career in Munich more than 20 years ago where he built up protein biochemistry teams for Connex and GPC-Biotech. During his academic education he earned a PhD in Biochemistry and an MBA in Marketing.

Paul Spencer, Owner, PharmaMercenary

Paul Spencer has a BS in Chemical Engineering, an MBA, and is a licensed PE in two states. Mr. Spencer started his career in the fermentation and purification of Monoclonal Antibody based diagnostic products. This included work conjugating MAbs to diagnostic markers. Later work has involved research to commercials manufacturing of innovative therapies, as well as high volume/high completive products. Mr. Spencer has 35 years of technical experience in a many of the therapeutic facilities. He provides a highly technical capability to those pharmaceutical units due to his 35 years of experience. He is a person that has been involved in significant improvements to the marketplace, often considered a thought leader in multiple unit operations and technological developments.

Christoph Winterhalter, Senior Vice President, Business Development, AGC Biologics

Dr. Christoph Winterhalter has 24 years of experience in Life Science and serves currently as Senior Vice President Business Development at AGC Biologics, a global biopharmaceutical CDMO with sites in US, EU and Japan. Before that he was heading

Business Development globally at Rentschler Biopharma with a strong contribution to the tremendous growth phase from 2013-2017 were sales more than tripled. Prior to joining Rentschler Biopharma, Christoph Winterhalter served as Vice President Biosolutions at Wacker Chemical Corporation in Michigan US heading a 100 MIL USD business for Life Science. Before that he held several positions at Wacker Chemie AG in Germany, where he started in 1995 to develop the first fermentation route to cysteine by metabolic design in *E. coli.* Christoph Winterhalter holds a Ph.D. in Microbiology at the Technical University of Munich.

16th Annual Report and Survey of Biopharmaceutical Manufacturing Capacity and Production • April 2019

A Study of Biotherapeutic Developers and Contract Manufacturing Organizations

CONTENTS

METHODOLOGYXXVI		XVI	
CHAPT	FER (D: DEMOGRAPHICS	1
I	ntro	duction	1
(0-1	Respondents' Area of Involvement	1
(0-2	Respondents Qualifications	4
(0-3	Facility Locations	6
(0-4	Areas of Biopharmaceutical Manufacturing Operations	8
(0-5	Production Operations, Phase of Development	. 10
(0-6	Employees at Facility	. 13
(0-7	Batches Run at Facility per Year	. 14
(0-8	Single-Use Bioreactor Capacity In Use at Site	. 16
(0-9	Stainless Steel Bioreactor Capacity In Use at Site	. 17
СНАРТ	TER 1	1: INTRODUCTION AND DISCUSSION	19
1	1-1	Introduction: The Pharmaceutical and Biopharmaceutical Industries	. 19
1	1-2	Current Status and Market Trends	. 24
1	1-3	Market Potential	. 28
1	1-4	Biopharmaceuticals and Biosimilars in the Pipeline	. 30
		FDA Biopharmaceutical Approvals	. 34
1	1-5	Global Biopharmaceutical and Recombinant Protein/MAb Markets	. 37
		Overall Health of the Biopharmaceutical Sector	
		U.S. Industry Leadership Continues	
		Biopharmaceuticals in the Rest of the World	
1	1-6	Biopharmaceutical Markets by Product Class	
		Monoclonal antibodies (mAbs) are the Leading Product Classes	. 45

1-7	1-7 Animal Derived Products and Biopharmaceuticals	47
1-8	Future Trends in the Biopharmaceutical Industry	48
CHAPTER	2: FUTURE OF BIOPROCESSING: EXPERTS' PERSPECTIVE	
2-1	Worldwide Biopharmaceutical CMO Capacity Analysis	53
2-2	Rapid Identification of Microbial Contamination	53
2-3	Suppliers' Contributions to Bioprocessing Advances	53
2-4	Make vs. Buy (In- vs. Outsourcing): Causes, criteria, and consequences	53
2-5	Mergers & Acquisitions	53
2-6	China's Advances in Biopharmaceutical Contract Manufacturing	53
CHAPTER	3: EMERGING ISSUES IN BIOPHARMACEUTICAL MANUFACTURING	89
3-1	Industry Trends in 2019	
	Introduction	
	Productivity and Cost Reductions	
	Novel Bioprocessing Systems/Innovations	
	Novel Bioprocessing Systems/Innovations – Biomanufacturers vs. CMOs	
3-2	5	
	Budget Change Comparisons	
3-3		
3-4	· · · · · · · · · · · · · · · · · · ·	
	Upstream New Product Areas of Need	
	Downstream New Product Areas of Need Previous Year Areas Include:	
	Other General New Product Areas of Need	
	Innovations in Single-use/Disposable Equipment	
	Discussion of Needed Single-use Innovations	
	Other Areas for Innovation	
	New Product Development Areas: Biotherapeutic Developers vs. CMOs	118
	New Product Development Areas: U.S. vs. Western Europe and ROW	120
3-5	Factors in Biomanufacturing Creating Improvements	122
	Factors Improving Biomanufacturing Performance, 2010 - 2015	122
	Factors Improving Biomanufacturing Performance, Biotherapeutic	
	Developers vs. CMOs (2015 Data)	122
	Factors Improving Biomanufacturing Performance, U.S. vs. Western Europe vs. ROW (2015 Data)	123
3-6		
3-7		
5-7	Cost-Cutting Actions & Development Timelines	
3-8		
3-8 3-9		
5-9	Biomanufacturing Assay Areas Required: Biomanufacturers vs. CMOs	

	3-10	Cell and Gene Therapy Platforms	133
		Cell and Gene Therapy Manufacturing Advancements (2018 data)	135
		Cell and Gene Therapy Manufacturing Improvements, Systems, Platforms and Infrastructure	136
	3-11	Selecting Bioreactors in New Facilities	
	3-12	Discussion: Industry Trends and Issues	142
	-	Industry Growth and Adaptation	
		Cost Cutting Trends	
		Trends in Assay Development	143
		Trends in Speeding Development and Approval Timelines	143
		Trends in Bioprocessing Industry Desire for Improved Products and Services	
CHA	PTER	4: CAPACITY UTILIZATION	145
	4-1	Capacity Utilization Trends	145
		Capacity Utilization Definitions	145
		Relevance of Capacity Utilization	145
		Capacity Utilization in Biomanufacturing, 2019	147
		Capacity Utilization Changes Since 2004	148
		Average Growth Rate in Capacity Utilization, 2006-2019	150
	4-2	Capacity Utilization: CMOs vs. Biotherapeutic Developers	150
	4-3	Capacity Utilization: U.S. vs. Western European Manufacturers	152
	4-4	Respondents' Current Total Production Capacity	154
		Mammalian Cell Culture	
		Estimated Bioreactor Capacity Distribution, Biotherapeutic Developers	
		and CMOs	158
		Biopharmaceutical Developers/Manufacturers as CMOs	160
		Microbial Fermentation Capacity	161
		Cell or Gene Therapy Capacity	162
	4-5	Discussion: Capacity Trends	164
	4-6	Range of Titers with mAb Production	165
		Annual mAb Titer Changes, 2008-2019	167
	4-7	Discussion: Capacity and Industry Trends	168
		Capacity Utilization	168
CHA	PTER	5: CURRENT AND FUTURE CAPACITY CONSTRAINTS	175
	5-1	Current Capacity Constraints	175
		Respondents Experiencing No Capacity Constraints	177
		Respondents' Perception of Capacity Constraints, 2004-2019	177
		Perception of Capacity Constraints: Biotherapeutic Developers vs. CMOs	179
		Capacity Constraints: U.S. vs. Western European Biotherapeutic	
		Developers & CMOs	182
	5-2	Expected Capacity Constraints	184
		Respondents' Expectations of Capacity Constraints by 2024	184

		Expected Capacity Constraints by 2024: Comparing 2004 to 2019 Data	
		Expected Capacity Constraints by 2024: Biotherapeutic Developers vs. CMOs.	
		Expected Capacity Constraints by 2024: U.S. vs. Western Europe	
5	5-3	Factors Impacting Future Production Capacity	
		Factors Creating Future Capacity Constraints	
		Factors Creating Future Capacity Constraints, 2008 - 2019	195
		Factors Creating Future Capacity Constraints: Biotherapeutic Developers vs. CMOs	107
		CMO Capacity Bottleneck Projections, in Retrospect	
		Biotherapeutic Developers' Capacity Bottleneck Projections, in Retrospect	
		Factors Creating Capacity Constraints: U.S. vs. Western	
		European Respondents	200
5	5-4	Key Areas to Address to Avoid Future Capacity Constraints	202
		Analysis of Areas to Avoid Capacity Constraints: Changing	
		Perspectives, 2006-2019	204
		Key areas to Address to Avoid Capacity Constraints; Biotherapeutic	007
		Developers vs. CMOs Key Areas to Address to Avoid Capacity Constraints: U.S. vs. Western Europe	
_		Discussion	
5	-	Overall Capacity Constraints	
			212
CHAPT	ER 6	: FUTURE CAPACITY EXPANSIONS	217
6	i-1	Planned Future Capacity Expansions	217
0	•		
0		Planned Future Capacity Expansions, 2009-2024	
Ū		Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic	218
o		Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers	218
ŭ		Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers Planned Five-Year Capacity Expansion: U.S. vs. Western European	218 220
0		Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers Planned Five-Year Capacity Expansion: U.S. vs. Western European Manufacturers	218 220 221
		Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers Planned Five-Year Capacity Expansion: U.S. vs. Western European	218 220 221
		Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers Planned Five-Year Capacity Expansion: U.S. vs. Western European Manufacturers	218 220 221 222
	ER 7	Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers Planned Five-Year Capacity Expansion: U.S. vs. Western European Manufacturers Planned Future Capacity Expansions of >100% *: OUTSOURCING TRENDS IN BIOPHARMACEUTICAL MANUFACTURING Why Outsource?	218 220 221 222 225
	ER 7	Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers Planned Five-Year Capacity Expansion: U.S. vs. Western European Manufacturers Planned Future Capacity Expansions of >100% *: OUTSOURCING TRENDS IN BIOPHARMACEUTICAL MANUFACTURING Why Outsource? Relating Outsourcing to Workforce Reduction	218 220 221 222 225 225 226
	ER 7	Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers Planned Five-Year Capacity Expansion: U.S. vs. Western European Manufacturers Planned Future Capacity Expansions of >100% *: OUTSOURCING TRENDS IN BIOPHARMACEUTICAL MANUFACTURING Why Outsource? Relating Outsourcing to Workforce Reduction Strategic Manufacturing Planning	218 220 221 222 225 226 226
СНАРТ	ER 7	Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers Planned Five-Year Capacity Expansion: U.S. vs. Western European Manufacturers Planned Future Capacity Expansions of >100% *: OUTSOURCING TRENDS IN BIOPHARMACEUTICAL MANUFACTURING Why Outsource? Relating Outsourcing to Workforce Reduction Strategic Manufacturing Planning Future Projections	218 220 221 222 225 225 226 226 227
СНАРТ	ER 7	Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers Planned Five-Year Capacity Expansion: U.S. vs. Western European Manufacturers. Planned Future Capacity Expansions of >100% ': OUTSOURCING TRENDS IN BIOPHARMACEUTICAL MANUFACTURING Why Outsource? Relating Outsourcing to Workforce Reduction Strategic Manufacturing Planning Future Projections. Current Outsourcing by Production System .	218 220 221 222 225 225 226 226 227
СНАРТ	ER 7	Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers Planned Five-Year Capacity Expansion: U.S. vs. Western European Manufacturers Planned Future Capacity Expansions of >100% *: OUTSOURCING TRENDS IN BIOPHARMACEUTICAL MANUFACTURING Why Outsource? Relating Outsourcing to Workforce Reduction Strategic Manufacturing Planning Future Projections	218 220 221 222 225 225 226 226 227 228
CHAPT 7	ER 7 ′-1	Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers Planned Five-Year Capacity Expansion: U.S. vs. Western European Manufacturers Planned Future Capacity Expansions of >100% *: OUTSOURCING TRENDS IN BIOPHARMACEUTICAL MANUFACTURING Why Outsource? Relating Outsourcing to Workforce Reduction Strategic Manufacturing Planning Future Projections Current Outsourcing by Production System Facilities Currently Outsourcing No Production (All Production "In-house"),	218 220 221 222 225 226 226 227 228 228 232
CHAPT 7	ER 7 7-1	Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers Planned Five-Year Capacity Expansion: U.S. vs. Western European Manufacturers Planned Future Capacity Expansions of >100% r: OUTSOURCING TRENDS IN BIOPHARMACEUTICAL MANUFACTURING Why Outsource? Relating Outsourcing to Workforce Reduction Strategic Manufacturing Planning Future Projections. Current Outsourcing by Production System Facilities Currently Outsourcing No Production (All Production "In-house"), 2006-2019	218 220 221 222 225 225 226 226 227 228 228 232
CHAPT 7	ER 7 7-1	Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers Planned Five-Year Capacity Expansion: U.S. vs. Western European Manufacturers Planned Future Capacity Expansions of >100% ': OUTSOURCING TRENDS IN BIOPHARMACEUTICAL MANUFACTURING Why Outsource? Relating Outsourcing to Workforce Reduction Strategic Manufacturing Planning Future Projections Current Outsourcing by Production System Facilities Currently Outsourcing No Production (All Production "In-house"), 2006-2019 Future Outsourcing	218 220 221 222 225 226 226 226 227 228 232 232 232 234
CHAPT 7	ER 7 7-1 7-2	Planned Future Capacity Expansions, 2009-2024. Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers. Planned Five-Year Capacity Expansion: U.S. vs. Western European Manufacturers Planned Future Capacity Expansions of >100%. : OUTSOURCING TRENDS IN BIOPHARMACEUTICAL MANUFACTURING Why Outsource? Relating Outsourcing to Workforce Reduction Strategic Manufacturing Planning Future Projections Current Outsourcing by Production System Facilities Currently Outsourcing No Production (All Production "In-house"), 2006-2019. Future Outsourcing Biotherapeutic Developers' Outsourcing, 5-Year/2024 Projections, by System.	218 220 221 222 225 225 226 226 227 228 228 232 232 234 234 236
CHAPT 7	ER 7 7-1 7-2	Planned Future Capacity Expansions, 2009-2024 Planned Future Capacity Expansions by 2024: CMOs vs. Biotherapeutic Developers Planned Five-Year Capacity Expansion: U.S. vs. Western European Manufacturers Planned Future Capacity Expansions of >100% toutsourcing treends in BiOPHARMACEUTICAL MANUFACTURING Why Outsource? Relating Outsourcing to Workforce Reduction Strategic Manufacturing Planning Future Projections Current Outsourcing by Production System Facilities Currently Outsourcing No Production (All Production "In-house"), 2006-2019 Future Outsourcing Biotherapeutic Developers' Outsourcing, 5-Year/2024 Projections, by System Biotherapeutic Developers Outsourcing Some Production in 2024	218 220 221 222 225 226 226 226 227 228 232 232 234 234 234 236 238

	Outsourcing Activities Projected at "Significantly Higher Levels",	
	Comparison of 2010-2019 Trends	244
	Average Percentage of Activities Outsourced Today	247
	Comparison of Outsourcing Activities, 2010-2019	249
	Change in Spending on Outsourcing Activities	252
7-4	Critical Outsourcing Issues	254
	Selecting a CMO: (2018 data)	254
	Selecting a CMO, 2006-2018	256
	Changes in Critical Issues when Considering a CMO, 2006-2018	258
7-5	CMOs' Problems with Their Clients	260
	Country Coloctions for International Outpoursing (Off charing)	
7-6	Country Selections for International Outsourcing (Off-shoring)	
7-6	of Biomanufacturing	263
7-6		
7-6	of Biomanufacturing	266
7-6	of Biomanufacturing. U.S. vs. Western European Respondents' Outsourcing Destinations	266 271
7-6	of Biomanufacturing. U.S. vs. Western European Respondents' Outsourcing Destinations Western European Respondents' Outsourcing Destinations	266 271 274
	of Biomanufacturing U.S. vs. Western European Respondents' Outsourcing Destinations Western European Respondents' Outsourcing Destinations 5-Year Projection for Biomanufacturing International Outsourcing/Off-shoring	266 271 274
	of Biomanufacturing. U.S. vs. Western European Respondents' Outsourcing Destinations Western European Respondents' Outsourcing Destinations 5-Year Projection for Biomanufacturing International Outsourcing/Off-shoring Offshoring Trends	266 271 274 276
	of Biomanufacturing. U.S. vs. Western European Respondents' Outsourcing Destinations Western European Respondents' Outsourcing Destinations 5-Year Projection for Biomanufacturing International Outsourcing/Off-shoring Offshoring Trends	266 271 274 276 278
7-7	of Biomanufacturing. U.S. vs. Western European Respondents' Outsourcing Destinations	266 271 274 276 278 278

8-1	Use of Disposables and Single-Use Systems	289
	Disposables Applications in Biopharmaceutical Manufacturing	290
	Trends in Disposable Applications: 2006-2019	292
	Average Annual Growth Rate for Disposables: Market Penetration/Usage	295
	13-Year Average Growth in Disposable Applications, Percentage-Point Gains	296
	Disposable Use by Stage of Production/Application	298
	Use of Disposables: CMOs vs. Biotherapeutic Developers	300
8-2	Leachables and Extractables	302
	Paying for L&E Testing, 2018, vs. 2016-2009	
8-3	Reasons for Increasing Use of Disposables & Single-Use Systems	304
	Single Most Critical Reason for Increasing the Use of Disposables (2018 data)	304
8-4	Factors That May Restrict Use of Disposables	306
	Most Critical Reasons for Restricting Use of Disposables	306
	Most Important Reasons for Not Increasing Use of Disposables, 2008-2019	308
	Most Important Reasons for Restricting Use of Disposables: Biotherapeutic	
	Developers vs. CMOs	311
	Top Reasons for Not Increasing the Use of Disposables: U.S. vs.	
	Western Europe	313
8-5	Suppliers' Expectations for Standards Setting Bodies	315
8-6	Need for Single-use Sensors, and Bioreactor Attributes	316

	Single-Use Adoption Issues (2018 data)	
	Single-use Adoption Factors, U.S. vs. Western Europe (2018 data)	
	Single-Use Sensor Technologies (2012-2017, 2019) Data	318
8	7 Satisfaction with Single-Use Device Vendors	
	Single-Use Attribute Importance Analysis	
	Single-Use Suppliers' Delivery Problems, 2013-2019	
8	8 Single Use Operations and Trends	
	Percentage of Unit Operations that Are Single-Use	
	Distribution of Responses	
8	9 Discussion of Single-use Bioprocessing	
	Single-use Advantages	
	Growth in the Use of Single-use Systems	
	Downstream Single-use Systems Usage	
	CMOs' Use of Single-use Equipment	
	Downstream Bottlenecks Persist	
	Modular: The Next Trend after Single-Use?	
	Single-use Equipment Sourcing, Quality Issues, and L&E Testing	
CHAPTI	R 9: DOWNSTREAM PURIFICATION	
9	1 Impact of Downstream Dressesing on Consolty	241
9	1 Impact of Downstream Processing on Capacity Impact of Downstream Processing on Capacity, Biopharmaceutical	
	Developers vs. CMOs	344
	Impact of Downstream Processing on Capacity, U.S. vs. Western	
	European Biomanufacturers	
9	2 Specific Purification Step Constraints	
	Changes in Impact on Capacity of Purification Steps, 2008-2019	
	Specific Purification Step Constraints, U.S. vs. Western European	
	Biomanufacturers	
9	3 Downstream Purification Issues	351
	Protein A and Alternatives (2017 data)	351
	Changes in Perception of Protein A and Alternatives	
	Protein A Downstream Purification Issues, U.S. vs. Western Europe (20	17 data) 354
9	4 mAb Purification Capacity Estimates	
	Upstream Production Titer vs. Max Capacity	
9	5 New Downstream Processing Technologies	
	New Downstream Processing Solutions; 2010 – 2019	
	New Downstream Processing Technologies; Biotherapeutic	
	Developers vs. CMOs	
	New Downstream Processing Technologies: U.S. vs. Western Europe	
9	6 Improvements to Downstream Operations	
	Comparison of New Downstream Technology Implementation;	
	Biomanufacturers vs. CMOs	
	Comparison of New Downstream Technology Investigations; U.S. vs.	
	W. Europe vs. ROW	

9-7	Discussion	372
	Upstream Expression Titer Trends and Impact on Downstream Operations	372
	Downstream Processing Solutions	
CHAPTER	10: QUALITY ISSUES, BATCH FAILURES, AND PAT IN BIOPHARMACEUTICA	AL.
MANUFAC	TURING	377
10-1	Quality Initiative Implementation	378
	Comparison of Quality Initiative Implementation, 2009 - 2018	380
	Quality Initiatives Are Becoming Commonplace and the New Industry Norm	382
	Challenges to Implementing PAT, QbD and other Quality Initiatives	382
10-2	2 Hurdles to Implementing Process Analytical Technology	
	Trends in PAT, 2008-2019	
	PAT Adoption Will Increase	
10-3	Batch Failure Frequency in Biopharmaceutical Manufacturing	387
10-4	Primary Cause of Batch Failures, Percentages of Failures	389
	Quality Problems Traced to Vendors	
	Process Information Needs and Value Drive Automation	396
10-5	Quality Problems in BioManufacturing Attributed to Vendors	397
10-6	Discussion	399
	Supply Management Issues with Single-Use Systems	399
CHAPTER	11: HIRING, EMPLOYMENT GROWTH, AND TRAINING IN BIOPHARMACEUT	'ICAI
	TURING.	
	Introduction	401
	No Substitute for on-the-job Training	
11-1	Hiring Trends	
	Trends in New Hires, by Area; 2008 – 2019	
11-2	Hiring in 2024: 5-year Trends	
	Hiring Challenges Today	
	Hiring Difficulties; 2010 - 2019	
11-4	Training in Biopharmaceutical Manufacturing	
	Changes in Training for New Manufacturing Employees, 2009-2018	
11-5	Discussion	
	Options Developing for Bioprocessing Training	
	Continued Growth in Biopharmaceutical Manufacturing Jobs	
CHAPTER	12: CONTINUOUS BIOPROCESSING	417
	Introduction	417
	Adoption of Continuous Bioprocessing	
	Implementation of Continuous Bioprocessing	

12-1 Perfusion Operations and Continuous Bioprocessing Operations Issues	426
Perfusion vs. Batch Fed Bioprocessing (2018 data)	429
12-2 Perfusion Operations and Continuous Bioprocessing Trends	431
12-3 Discussion	433
Continuous Bioprocessing: Trends and Opportunities	433
Perfusion: Progress in Adoption	434

CHAPTER 13: SUPPLIERS TO BIOPHARMACEUTICAL MANUFACTURING AND

LIFE SCIEN	ICES	
	Introduction	
13-1	Demographics	
	Areas of Involvement	
	Location of Vendor Sales	
	Respondents' Primary Job	
13-2	Growth Rate of Sales by Suppliers	
	Average Industry Growth Rate, By Segment	
	Vendor Sales Growth Rates, by Industry Segment, 2007 - 2019	
	Supplier Annual Sales, Distribution	
13-3	Discussion of Vendor and Industry Growth	
13-4	Budget Issues and Problems Faced by Industry Suppliers	
	Budget Challenges in 2018	
	Vendor Average Budget Changes for 2009 -2018	
	Vendor Pricing Changes	
	Past Year and Expected Price Changes (2009-2019)	
	Supplier Budget Issues	
13-5	Cost Cutting Actions by Vendors	
	Cost Cutting Actions, By Segment	
13-6	Problems Clients Have with Their Vendors	
13-7	Vendor Expansion Plans	
	Biopharma Vendor Business Trends, 2010 - 2019	
13-8	New Technology Areas in Development	
	by Vendors	
	Suppliers' Development of Innovative Technologies	
	Suppliers' R&D Spending/Budgets for New Products/Services	
13-9	Sales Staff Training	
	Days of Training Provided by Suppliers	
	Areas where Training May Help Sales Staff Perform, Trends	
	2010 - 2019	
	Clients' Demands on Vendors	

13-10	Biopharma Vendors' Financial Outlook for 2019	
13-11	CMO Pricing Changes for Biopharmaceutical Services	480
13-12	Discussion of Biopharma Suppliers	
	Bioprocessing Vendors Will See Continued Market Growth	
	Single-use Systems Continue to Drive Sales	
	Trends Favor Increased Vendor Sales	
	Vendors are Offering More Services, Going for Larger Sales	
	Biopharma Suppliers in Emerging Regions	

FIGURES

Fig 0.1:	Area of Primary Involvement in Biopharmaceutical Manufacturing, 2010 to 2019	.3
Fig 0.2:	Respondents' Job Responsibilities, 2011 – 2019	.5
Fig 0.3:	Facility Location	.6
Fig 0.4:	Facility Location, by Region	.7
Fig 0.5:	Biopharmaceutical Manufacturing Systems, (2007-2019) Trends	.9
Fig 0.6:	Phase of Development of Surveyed Respondents, 2006-2019	11
Fig 0.7:	Phase of Development of Surveyed Respondents (U.S. vs. Western Europe)	12
Fig 0.8:	Distribution of Employees at Facility, and Organization	13
Fig 0.9:	Distribution of Total Batches Run at Facility Last Year, by Scale of Production	15
Fig 0.10:	Distribution of Largest SINGLE-USE Bioreactor Capacity	16
Fig 0.11:	Distribution of Largest STAINLESS Bioreactor Capacity	18
Fig 1.1:	U.S. Biosimilars Launchable Dates 2012-2014 by Current Cumulative Reference Product Sales (\$Millions)	33
Fig 1.2:	U.S. Biosimilars Launchable Dates 2012-2014 by Current Cumulative Reference Product Sales (\$Millions)	33
Fig 1.3:	Number of FDA Approvals of New Biopharmaceutical Products 1982-2018	34
Fig 2.1:	Total CMO Facilities and Capacity by Bioprocessing Capacity Scales	55
Fig 2.2:	Distribution of All and CMO Facilities by Facility Capacity Ranges	55
Fig 2.3:	The 10-C criteria for make-or-buy decisions	73
Fig 2.4:	A scenario-based approach	78
Fig 2.5:	A make-or-buy decision tree	79
Fig 2.6:	Integration of services in the CDMO value chain	30
Fig 3.1:	SINGLE most important biomanufacturing trend or operational area, 2014-2019	91
Fig 3.2:	Novel Bioprocessing Systems/Innovations to Evaluate in Next 12 Months	93
Fig 3.3:	Novel Bioprocessing Systems/Innovations to Evaluate in Next 12 Months (Biomanufacturers vs. CMOs)	95
Fig 3.4:	Biomanufacturers' Budget Shifts in 2019	97
Fig 3.5:	Approximate Average Change in Biomanufacturers' Budgets for 2019	
Fig 3.6:	Average Biomanufacturers' Budget Change, 2009-201910)1
Fig 3.7:	New Product Development-Upstream Focus Areas)5
Fig 3.8:	Upstream New Product Development Areas Cited Where Suppliers Should Focus Development Efforts (2010-2019)10)7
Fig 3.9:	Downstream New Product Development Areas Cited Where Suppliers Should Focus Development Efforts, 2019)9
Fig 3.10:	New Product Development-Downstream Focus Areas (2010-2019)1	11
Fig 3.11:	New Product Development – General Focus Areas, Biomanufacturers & CMOs, 2019	13
Fig 3.12:	New Product Development – General Focus Areas, 2010-20191	14
Fig 3.13:	Top 10 New Product Development Areas of Interest: Biomanufacturers vs. CMOs	19

Fig 3.14:	Top 10 New Product Development Areas of Interest: U.S. vs. Western Europe and ROW121	
Fig 3.15:	Cost-Cutting Changes: Actions Undertaken During "Past 12 Months" Comparing 2011-2016, 2019	125
Fig 3.16:	Cost-Cutting Changes, Outsourced Jobs, by Segment, and Geography (2011-2016, 2019)	127
Fig 3.17:	Distribution, Average Cost per Gram for PRIMARY Recombinant Protein, 2019	128
Fig 3.18:	Biomanufacturing Assay "Areas" Urgently Requiring New, Improved Testing Methods, 2011 -2015, 2018-2019	130
Fig 3.19:	Biomanufacturing Assay "Areas" Urgently Requiring New, Improved Testing Methods; Biomanufacturers vs. CMOs (2019 data)	132
Fig 3.20:	Future Cell and Gene Therapy Platforms, 2019	134
Fig 3.21:	Cell and Gene Therapy Manufacturing Advancements in 5 Years (2023) to Avoid Bottlenecks	135
Fig 3.22:	Most Needed Cell & Gene Therapy Manufacturing Improvements, Systems, Platforms and Infrastructure	137
Fig 3.23:	Likelihood of Implementing Bioreactor, by Type, 2017	140
Fig 3.24:	Likelihood of Implementing Single-use Bioreactors, Clinical Scale, 2012-2017	141
Fig 4.1:	Capacity Utilization, By System	148
Fig 4.2:	Capacity Utilization, By System, 2004-2019	149
Fig 4.3:	Change in Capacity Utilization, CAGR, 2006-2019	150
Fig 4.4:	Capacity Utilization, By System, Biotherapeutic Developer vs. CMOs, 2019	152
Fig 4.5:	Capacity Utilization, By System, U.S. vs. Western Europe, 2019	154
Fig 4.6:	Current Production Capacity Distribution, Mammalian Cell Culture	156
Fig 4.7:	Production Capacity Distribution, Mammalian Cell Culture, 2011-2019	157
Fig 4.8:	Bioprocessing Concentration, Capacity Data, 2019	158
Fig 4.9:	Current Production Capacity Distribution, Microbial Fermentation	162
Fig 4.10:	Current Production Capacity Distribution, Cell or Gene Therapy	163
Fig 4.11:	Range of Titers for mAbs Obtained at Various Production Scales, 2019 Distribution	166
Fig 4.12:	Average mAb Titer Trend 2008-2019	167
Fig 5.1:	Capacity Constraints, by Stage of Production	176
Fig 5.2:	Capacity Constraints, 2004 -2019	178
Fig 5.3:	Capacity Constraints Trends, 2004-2019	179
Fig 5.4:	Capacity Constraints, Biotherapeutic Developers vs. CMOs	181
Fig 5.5:	Capacity Constraints, U.S. vs. Western Europe	183
Fig 5.6:	Expectations of Capacity Constraints by Stage of Production: Five-year Projections	185
Fig 5.7:	Expectations of Capacity Constraints: Five-year Projections Made in 2004-2019	187
Fig 5.8:	Expectations of Capacity Constraints: Five-year Projections Made in 2004 thru 2024 (Trend Line)	188
Fig 5.9:	Five-year Projections for Capacity Constraints: Biotherapeutic Developers vs. CMOs	190

Fig 5.10:	Five-year Projections for Capacity Constraints: U.S. vs. Western Europe	192
Fig 5.11:	Factors Creating Future Capacity Constraints in Five Years	194
Fig 5.12A:	Factors Creating Future Capacity Constraints, 2008-2019	195
Fig 5.12B:	Factors Creating Future Capacity Constraints, 2008-2018	196
Fig 5.13:	Factors Creating Future Capacity Constraints: Biotherapeutic Developers vs. CMOs	198
Fig 5.14:	Factors Creating Future Capacity Constraints, U.S. vs. Western European Biomanufacturers	201
Fig 5.15:	Key Areas to Address to Avoid Capacity Constraints	203
Fig 5.16A:	Key Areas to Address to Avoid Capacity Constraints; 2006-2019	205
Fig 5.16B:	Key areas to Address to Avoid Capacity Constraints; 2006-2019	206
Fig 5.17:	Key Areas to Address to Avoid Capacity Constraints; Biotherapeutic Developers vs. CMOs	208
Fig 5.18:	Key Areas to Address to Avoid Capacity Constraints; U.S. vs. Western Europe	210
Fig 6.1:	Industry Average Planned Production Increase by 2024	218
Fig 6.2:	Planned Future Capacity Expansion: Five-Year Estimates, 2009–2024	219
Fig 6.3:	Planned Future Capacity Expansion: Five-year Estimates: Biotherapeutic Developers vs. CMOs	220
Fig 6.4:	Planned Future Capacity Expansion: Five-Year Estimates: U.S. vs. Western Europe	222
Fig 6.5:	Percentage of Respondents Projecting Production Increases over 100% by 2024: Five-year Trend	223
Fig 7.1:	Current Percent Production Outsourced; by System	
Fig 7.2:	Biopharmaceutical Manufacturing Facilities Outsourcing NO Production, 2006-2019	
Fig 7.3:	Future Outsourcing: Percent Production Outsourced; by 2024, by System	
Fig 7.4:	Five-year Projections: % Biotherapeutic Developers Planning to Outsource at Least Some Production; Projections made 2007-2019	
Fig 7.5:	Percent of Biomanufacturers Outsourcing at Least Some Activity Today	
Fig 7.6A:	Percent of Biomanufacturers Outsourcing at Least Some Activity Today, 2010 – 2019	
Fig 7.6B:	Percent of Biomanufacturers Outsourcing at Least Some Activity Today, 2010 – 2019	
Fig 7.7:	Outsourcing Activities Projected to be Done at "Significantly Higher Levels" in 2 Years	
Fig 7.8A:	Outsourcing Activities Projected to be Done at "Significantly Higher Levels" in 2 Years, 2010 - 2019 Trends	245
Fig 7.8B:	Outsourcing Activities Projected to be Done at "Significantly Higher Levels" in 2 Years, 2010 - 2019 Trends	246
Fig 7.9:	Current Outsourcing: Average Percentage of Activity Outsourced Today	248
0	Estimated Average Percent of Activity Outsourced by Facilities, 2010 thru 2019.	
Fig 7.10B:		
Fig 7.11:	Change in Spending on Outsourcing for R&D or Manufacturing, 2012 - 2019	253

Fig 7.12:	Outsourcing Issues: BioManufacturing by Contract Manufacturing	
	Organizations	255
Fig 7.13:	Important Outsourcing Issues: BioManufacturing by Contract Manufacturing Organizations, Trends 2006-2018	257
Fig 7.14:	Important Outsourcing Issues: Response Shifts Over Time 2006-2018, Percentage Point Differences	259
Fig 7.15:	Most Common Mistakes Biopharmaceutical Sponsors Make with their CMOs, 2018	261
Fig 7.16:	Most Common Mistakes Biopharmaceutical Sponsors Make with their CMOs, 2010-2013; 2018	262
Fig 7.17:	Country Selections as Destination for International Outsourcing of BioManufacturing (All Respondents), in the next five years, 2024	265
Fig 7.18A:	Percent U.S. Respondents Considering Country as "Possible" Outsourcing Destination, next five years, 2024	267
Fig 7.18B:	Percent U.S. Respondents Considering Country as "Possible" Outsourcing Destination, next five years, 2024	268
Fig 7.19:	Percent U.S. Respondents Considering Country as "Strong Likelihood" or "Likelihood" as Outsourced Capacity Destination, next five years, 2024	269
Fig 7.20:	Percent Western European Respondents Considering Country as "Possible" Outsourcing Destination, next five years, 2024	272
Fig 7.21:	Percent European Respondents Considering Country as "Strong Likelihood" or "Likelihood" as Outsourced Capacity Destination	273
Fig 7.22:	Percent of Biomanufacturing Operations Off-shored (International Outsourcing) within 5 Years (2024)	275
Fig 7.23:	Percent Biomanufacturers Performing at Least "Some" International Outsourcing/Off-shoring during Next 5 Years (2011-2019)	277
Fig 7.24:	Estimated % Operations Done as International Outsourcing/Off-shoring during Next 5 Years (2011-2019)	279
Fig 8.1:	Usage of Disposables in Biopharmaceutical Manufacturing, Any Stage of R&D or Manufacture	291
Fig 8.2A:	Usage of Disposables in Biopharmaceutical Manufacturing, Any Stage of R&D or Manufacture: 2006-2019	293
Fig 8.2B:	Usage of Disposables in Biopharmaceutical Manufacturing, Any Stage of R&D or Manufacture: 2006-2019	294
Fig 8.3:	Average Annual Growth Rate, Disposables, 2006-2019	296
Fig 8.4:	13-Year Percentage-Point Change in First Usage of Disposables, 2006-2019	297
Fig 8.5:	Usage of Disposables in Biomanufacturing by Stage of Manufacture (R&D–Commercial)	299
Fig 8.6:	Usage of Disposables in Biopharmaceutical Manufacturing: Biotherapeutic Developers vs. CMOs	301
Fig 8.7:	Willingness to Pay for Useable Leachables and Extractables Data (2018 Data)	303
Fig 8.8:	Single Most Critical Reason for Increasing Use of Disposables, 2009 - 2018	
Fig 8.9:	Top Reasons for Not Increasing Use of Disposables, 2019	307

Fig 8.10A:	Top Reasons for Not Increasing Use of Disposables, 2008-2019	309	
Fig 8.10B:	Top Reasons for Not Increasing Use of Disposables, 2008-2019		
Fig 8.11:	Top Reasons for Not Increasing Use of Disposables, Biotherapeutic Developers vs. CMOs		
Fig 8.12:	Top Reasons for Not Increasing Use of Disposables, U.S. vs. Western Europe	314	
Fig 8.13:	Suppliers' Perception of Organizations Responsible for Establishing Standards for Single-use Devices (2017 data)		
Fig 8.14:	Single-use / Disposable Device Adoption Factors (2018 data)		
Fig 8.15:	Single-use / Disposable Device Adoption Factors; U.S. vs. Western Europe, 2018 data		
Fig 8.16:	Need for Improved Single-Use Sensors, 2012-2017, 2019		
Fig 8.17:	Single-Use Product Vendor Satisfaction Factors, 2008-2019		
Fig 8.18:	Importance of Single-Use Product Attributes vs. Level of Vendor Satisfaction		
Fig 8.19:	Percentage Point Gap between Importance of SUS Product Attributes and Level of Satisfaction, 2013-2019		
Fig 8.20:	Estimated Percentage of Facilities' Unit Operations that Are "Single-Use" (2014 - 2019)		
Fig 8.21:	Distribution of Responses, % Single-Use Devices in Biomanufacturing		
Fig 9.1:	Impact of Downstream Processing on Overall Capacity, 2008-2019	343	
Fig 9.2:	Impact of Downstream Processing on Overall Capacity; Biotherapeutic Developers vs. CMOs	344	
Fig 9.3:	Impact of Downstream Processing on Overall Capacity; U.S. vs. Western Europe	346	
Fig 9.4:	Impact on Capacity of Depth, Chromatography and UF Purification Steps	348	
Fig 9.5:	Impact on Capacity of Purification Steps: Experiencing at "Significant" or "Severe" Constraints, 2008 – 2019		
Fig 9.6:	Impact on Capacity of Purification Steps, U.S. vs. Western Europe		
Fig 9.7:	Issues Regarding Protein A Usage (2017 data)		
Fig 9.8:	Issues Regarding Protein A Usage, 2009 - 2017		
Fig 9.9:	Issues Regarding Protein A Usage; U.S. vs. Western Europe		
Fig 9.10:	mAb Operations: Upstream Production Titer (Distribution of Responses, 2014 -2016, 2018-2019 Data)		
Fig 9.11:	Bioreactor Yield at which DOWNSTREAM Purification Train Becomes Bottlenecked		
Fig 9.12:	New Downstream Processing Solutions, 2019	358	
Fig 9.13A:	New Downstream Processing Solutions Comparison 2010-2019	360	
Fig 9.13B:	New Downstream Processing Solutions Comparison 2010-2019		
Fig 9.14:	New Downstream Processing Solutions; Biotherapeutic Dev. vs. CMOs	363	
Fig 9.15:	New Downstream Processing Solutions; U.S. vs. Western Europe	365	
Fig 9.16:	Improving Downstream Operations, 2011 - 2019	367	
Fig 9.17:	Improving Downstream Operations; Biomanufacturers vs. CMOs		
Fig 9.18:	Improving Downstream Operations (U.S. vs. Western Europe vs. ROW)	371	

Fig 10.1:	Quality Initiative Implemented Currently, or within Next 12 Months (2018 DATA)	379
Fig 10.2:	Quality Initiative to be Implemented in "Next 12 Months," Comparing 2009 - 2018	381
Fig 10.3:	Hurdles Hindering Implementation of PAT (2008 – 2019)	
Fig 10.4:	Batch Failure Frequency Distribution, 2009 – 2019	
Fig 10.5:	Average Rates of Failure, by Primary Cause, and Phase of Manufacture	391
Fig 10.6:	Average Rates of Failure, by Primary Cause, and Phase of Manufacturing 2009 - 2019 (Commercial Manufacture)	393
Fig 10.7:	Average Rates of Failure, by Primary Cause, and Phase of Manufacturing 2009 - 2019 ("Clinical" Scale)	394
Fig 10.8:	Quality Problems Traced to Vendors; 2008 – 2018	398
Fig 11.1:	New Hires in Biopharmaceutical Manufacturing (2019)	403
Fig 11.2:	Estimated Hiring, by Area, 2008-2019	404
Fig 11.3:	New Hires in Biopharmaceutical Manufacturing (2024)	405
Fig 11.4:	Areas Where Hiring Difficulties Exist in Biopharmaceutical Operations	407
Fig 11.5:	Areas Where Hiring Difficulties Exist in Biopharmaceutical Operations; 2010 – 2019	409
Fig 11.6:	Areas Where Hiring Difficulties Exist in Biopharmaceutical Operations, U.S. vs. Western Europe	411
Fig 11.7:	Training for New Operations/Manufacturing Employees (2018 data)	413
Fig 11.8:	Average Annual Changes in Training for New Operations/Manufacturing Employees, 2009 – 2018	413
Fig 12.1:	Changing the way culture is viewed	420
Fig 12.2:	Example of an operational workflow diagram for an upstream process	421
Fig 12.3:	Triangle of Pharmaceutical Facility Design	422
Fig 12.4:	The QbD principles as laid out by ICH Q8 and Q11	423
Fig 12.5:	Future of Continuous Bioprocessing and Process Intensification	425
Fig 12.6:	Perfusion Operations Issues: Comparison 2010 - 2016 (2016 data)	428
Fig 12.7:	Concerns Over Perfusion Processes vs. Batch-fed Processes in Bioprocessing.	430
Fig 12.8:	Facilities Evaluating CBP Technologies Over Next 12 months (Upstream vs. Downstream), 2016-2019	432
Fig 13.1:	Area of Biopharmaceutical Involvement, Vendor	438
Fig 13.2:	Area of Biopharmaceutical Involvement, Vendor Comparison 2010 to 2019	439
Fig 13.3:	In Which Geographic Regions/Countries Does Your Company Currently Actively Sell, 2008 - 2019	441
Fig 13.4:	Respondents' Primary Job Function	442
Fig 13.5:	Average Annual Vendor Sales Growth Rate, 2007 - 2019	443
Fig 13.6:	Biopharmaceutical Supply Market Segment Sales Growth Distribution	444
Fig 13.7:	Average Annual Vendor Segment Sales Growth Rates, 2019	445
Fig 13.8:	Average Annual Vendor Sales Growth Rate, 2007 - 2019, by Segment	446
Fig 13.9:	Vendors' Approx. Annual Sales to Biopharmaceutical Segment %, 2012-2019	448

Fig 13.10:	Vendors' Average Budget Change, 2019	451
Fig 13.11:	Vendors' Average Budget Change for 2009 - 2019, Summary	453
Fig 13.12:	Vendors' Average Pricing Changes	454
Fig 13.13:	Vendors' Average Pricing Changes, 2009-2018 Actual and 2019 projected	456
Fig 13.14:	Actions undertaken to reduce overall costs, prior 12 months, 2011-2017	458
Fig 13.15:	Actions undertaken to reduce overall costs in past 12 months, By Segment (2017 data)	460
Fig 13.16:	(See Fig 10.8; recap): Quality Problems Traced to Vendors (2008-2018)	462
Fig 13.17:	Biopharma Business and Marketing Plans, 2019	464
Fig 13.18:	Biopharma Business and Marketing Plans, 2010-2019	466
Fig 13.19A	: Top New Technologies or New Product Development Areas	468
Fig 13.19B	: Top New Technologies or New Product Development Areas	469
Fig 13.20:	Plans for Launching Significant, Truly Novel Bioprocessing Advances (2017 data)	472
Fig 13.21:	R&D Spending/Budgets for New Products/Services, 2019	473
Fig 13.22:	Areas Where Training is Considered as Needed; 2010 – 2019	475
Fig 13.23:	Client Demands of Vendors, Service and Support, 2012 - 2019	477
Fig 13.24:	Vendors Views of Financial (Sales) Outlook for Next Year, 2011-2019	479
Fig 13.25:	Average CMOs Service Price Shifts in 2019	480
Fig 13.26:	CMOs Service Price Shifts in 2019, Distribution	481

TABLES

Table 0.1	Areas of Biopharmaceutical Manufacturing Operations	9
Table 1.1	Recently Announced CMO SUS-based Commercial Scale Expansions & New Facilities	23
Table 1.2	FDA Biopharmaceutical Approvals, 2018	35
Table 1.3	Number of Biopharmaceutical Products in U.S. and European Markets*	38
Table 1.4	Summary of Worldwide Biopharmaceutical Revenue Growth by Product Class, 2007 and 2018	45
Table 2.1	Total and CMO Facilities Bioprocessing Capacity Scales	54
Table 2.2	Regional Distribution of Bioprocessing and CMO Facilities, Total & Average Capacity	57
Table 2.3	Major US W. European Bioprocessing CMOs, # Facilities and Estimated Capacity*	60
Table 2.4	Some Recently Announced CMO SUS-based Commercial Scale Expansions & New Facilities	63
Table 2.5	Constructs and Contracts for Manufacturing	77
Table 2.6	Recent M&A activities	81
Table 2.7	Service offerings and value chains of selected CDMOs	83
Table 3.1	Areas of Significant Projected Budget Percentage Increases for Biomanufacturing, 2019 and Past Years	100

Table 4.1	Western European Biomanufacturers' Average Capacity Utilization	153
Table 4.2	U.S. Biomanufacturers' Average Capacity Utilization	153
Table 4.3	Leading Biopharma Company Capacity	159
Table 4.4	Compound Annual Change in Mab Titer, 2008-2019	167
Table 5.1	Severe or Significant Capacity Constraints, by Stage of Production, 2009-2019	176
Table 5.2	Severe and Significant Capacity Constraints Today, U.S. vs. W. Europe, 2010-2019	182
Table 6.1	Western European Biomanufacturers' Five-Year Projected Increases	221
Table 6.2	U.S. Biomanufacturers' Five-Year Projected Increases	221
Table 7.1	Respondents Reporting No Outsourced Production (i.e., all in-house manufacturing), 2009-2019	229
Table 7.2	Respondents Outsourcing up to 50% of Production, Mammalian and Microbial Systems, 2009-2019	229
Table 7.3	Respondents Outsourcing Over 50% of Production, Mammalian and Microbial Cell Systems, 2009-2019	230
Table 7.4	Plant and Insect Cells, 2015-2019	232
Table 7.5	Percent of U.Sbased Respondents Indicating Country as a "Strong Likelihood" or "Likelihood" as Outsourcing Destination, 2009-2019	270
Table 7.6	Percent of European-based Respondents Indicating Country as a "Strong Likelihood" or "Likelihood" as Outsourcing Destination, 2011-2019	274
Table 9.1	Percent experiencing "Serious" or "Some" capacity problems due to downstream processing 2008-2019	345
Table 9.2	Percent U.S. vs. Western Europe facilities experiencing "Serious" capacity problems due to downstream processing, 2009-2019	345
Table 9.3	Percent U.S. vs. Western Europe facilities not expecting to see bottlenecks due to downstream processing, 2008-2018	346
Table 9.4	Upstream Production Titer vs. Max Capacity, 2019 Data	355
Table 13.1	Selected "Other" New Technology Areas in Development	470
Table 13.2	Average Vendor Sales and Technical Training Days, 2011 – 2013, 2019	473

METHODOLOGY

This report is the 16th in our annual evaluations of the state of the biopharmaceutical manufacturing industry. The strength of this study's methodology remains in its breadth of coverage, which yields a composite view from the respondents closest to the industry. This year, BioPlan Associates, Inc. surveyed 221 qualified and responsible individuals at biopharmaceutical manufacturers and contract manufacturing organizations in 24 countries; plus 120 industry vendors and direct suppliers of materials, services and equipment to this industry segment. Using a web-based survey tool, we obtained and evaluated information including regarding respondents' current capacity, production, novel technology adoption, human resources, quality, and outsourcing issues. We also assessed respondents' projected reasons for bottlenecks, and their perception of how these bottlenecks might be resolved.

We continue to provide additional in-depth analysis of specific issues affecting the industry, including monographs in Chapter 2. These monographs cover the events and trends that will shape biopharmaceutical manufacturing over the next five years. We also have included this year a chapter on Continuous Bioprocessing. Over the past few years, advances in technologies, expression systems, and single-use applications have increasingly made this segment an area of interest for innovation.

To ensure comprehensive global coverage, we partnered with world-wide organizations to ensure the most accurate overview of the worldwide biopharmaceutical industry. Our industry partners are cited in our acknowledgments section. In addition, to support this coverage, we also include acknowledgment of our media partners, whose assistance enabled us to reach the many high quality of respondents required in this quantitative analysis.

Further information on methodology, breakouts on specific segments, and data from earlier surveys may be requested by contacting us at the address below.

Eric S. Langer President BioPlan Associates, Inc. 2275 Research Blvd., Suite 500 Rockville, MD 20850 301-921-5979 elanger@bioplanassociates.com www.bioplanassociates.com

CHAPTER 0: DEMOGRAPHICS

INTRODUCTION

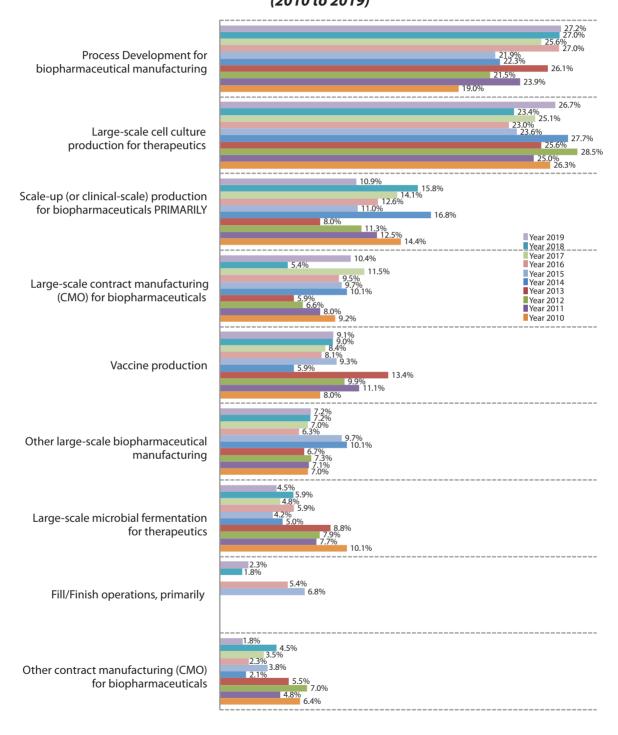
Survey respondents included diverse biopharmaceutical senior managers, executives and scientists covering a spectrum involved in biopharmaceutical development and manufacturing, including those within CMOs. As reported below, nearly 90% of respondents had VP, CEO or Director job titles. In addition, in Chapter 13, we separately present responses from bioprocessing suppliers and vendors. As in previous years, responses are from companies of all sizes and types. Respondents have a broad range of responsibilities, but all respondents had to qualify as involved with bioprocessing/manufacturing in some way.

This is an international project done annually, with this now the 16th year edition. We solicit and receive survey responses from individuals at organizations around the world. This year includes input from individuals based in 24 countries.

The diversity of survey respondents supports providing a comprehensive view of the industry from those most involved in managing biopharmaceutical manufacturing activities worldwide. Resulting survey data offer a means for understanding the industry and its future course. The breakdown of results by organization class, such as into CMOs vs. biotherapeutic manufacturers, provides further insights into these two major segments of the industry. These two types of organizations have different business drivers, risk profiles, costs of capital, etc.

0-1 RESPONDENTS' AREA OF INVOLVEMENT

Of the 221 biopharmaceutical manufacturers and contract manufacturing organizations responding to this year's survey, 27.2% were primarily involved in *"Process development for biopharmaceutical manufacturing"*, up from 27.0% in 2018 and 25.6% in 2017; and 26.7% were involved in *"Large-scale cell culture production for therapeutics"*, an increase from 23.4% in 2018 and 25.1% in 2017. There was a sharp decrease to 10.9% for this year for those involved in *"Scale-up (or clinical-scale) production for biopharmaceuticals PRIMARILY"*, compared with 15.8% in 2018 and 14.1% in 2017. But overall, the general pattern of type of organization of those surveyed did not change.

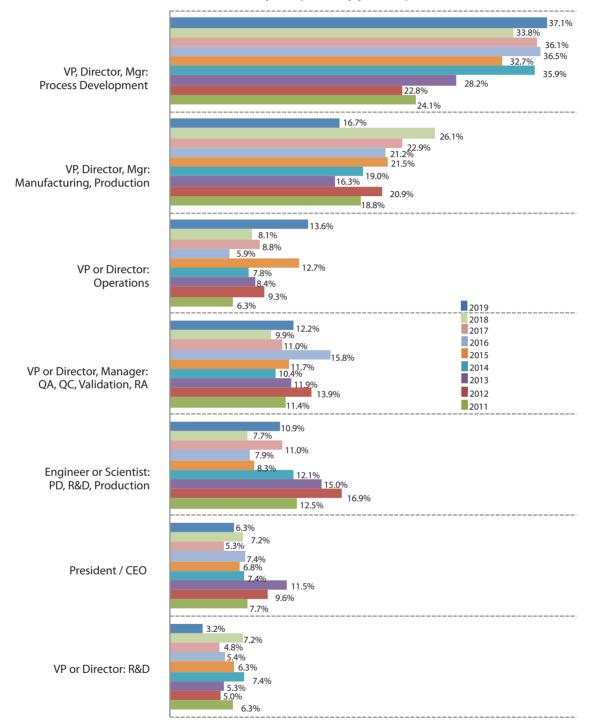

Respondents involved with "Large-scale contract manufacturing (CMO) for biopharmaceuticals" increased to 10.4% from 5.4% in 2018. "Large-scale microbial fermentation for therapeutics" dropped from 5.9% in 2018 to 4.5%, closer to the 4.8% reported in 2017. "Vaccine production" was 9.1%, virtually unchanged from 9.0% in 2018, which was a slight uptick from 8.4% in 2017. "Other large-scale biopharmaceutical manufacturing" accounted for 7.2%, the same percentage as in 2018, which was a slight increase from 7.0% in 2017. "Other" contract manufacturing

(CMO) for biopharmaceuticals" dropped sharply from 4.5% in 2018 to 1.8%, the lowest level reported since 2014 (2.1%). *"Fill/Finish operations"* accounted for 2.3%, a slight increase from 2018 (1.8%), but still much less than 5.4% in 2016.

Overall, the makeup of respondents remains consistent with prior years' surveys. Despite variations, including decreases, in involvement in aspects of biopharmaceutical manufacturing, this year's data continue to fall within the range generally defined by prior years' data reports, with the relative rankings remaining largely unaffected. This year-to-year coherency supports the accuracy of these demographic data.

Fig 0.1: Area of Primary Involvement in Biopharmaceutical Manufacturing, 2010 to 2019

"In which area of biopharmaceutical manufacturing is your organization currently involved?" (2010 to 2019)

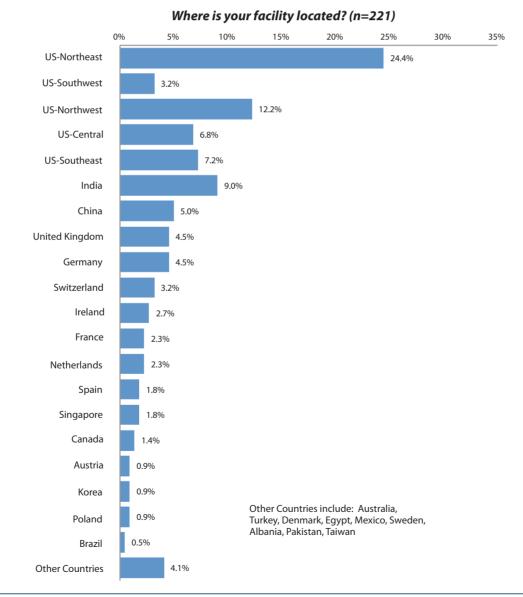


0-2 RESPONDENTS QUALIFICATIONS

Respondents were asked about their areas of responsibility, as indicated by job title (Fig. 0.2). Over 89% had a title of "*VP*, *Director*, *or President/CEO*", a slight decrease from last year's 92%, but still consistent with the levels since 2014, with an average of about 90% in recent years. This year, 12.2% of respondents were "*VPs, Directors or Managers of QA, QC, Validation, or RA*", an increase from 9.9% in 2018 and closer to the 11.0% in 2017, but not as high as 15.8% in 2016. The category "Engineer or Scientist: PD, R&D, and Production" (i.e., without VP/Director/Manager responsibilities) accounted for 10.9% of respondents, a marked increase from 7.7% in 2018, but overall a decrease from 11.0% in 2017.

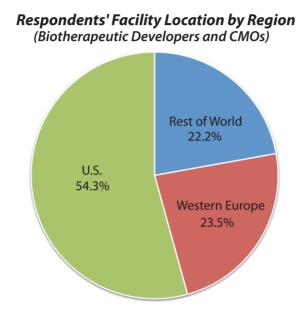
"Presidents/CEOs" represented 6.3% of respondents, down from 7.2% in 2018 and 5.3% in 2017; and "VPs or Directors of R&D" accounted for 3.2% of respondents, a dramatic decrease from 7.2% in 2018 and less than previous years. The category *"VP or Director: Operations"* grew substantially to 13.6% in this year's survey, up from 8.1% in 2018 and 8.8% in 2017. *"VPs, Directors or Managers in Process Development"* again comprised the largest percentage of respondents at 37.1%, up from 33.8% in 2018 and 36.1% in 2017. Although *"VPs, Directors or Managers of Manufacturing and Production"* accounted for the next-highest percentage at 16.7%, this was much lower than 26.1% in 2018 and 22.9% in 2017. Combining *"VPs, Directors, and Managers in Process Development"* with those in Manufacturing and Production, the total is 53.8%, still representing most of the respondents, but less than the 59.9% in 2018. Overall, respondent job titles and levels of responsibility have changed little over the years.

Fig 0.2: Respondents' Job Responsibilities, 2011 – 2019



Which best describes your primary job responsibilities?

0-3 FACILITY LOCATIONS


This year, surveyed respondents were based in 24 countries (Fig. 0.3). Approximately 54% of the respondents were from the United States, with the Northeastern U.S. continuing to make up the largest group at 24.4%, a decrease from 27.9% in 2018 and 28.6% in 2017. Respondents from Western Europe made up just over 23% of the total, an increase from 18.9% in 2018 and closer to the 24% in 2017 and 21.4% in 2016. Asia is well represented, including a dramatic growth from 6.8% in 2018 to 9.0% in India, but a decrease from 8.1% in 2018 to 5.0% in this year's survey in China. Other countries (not covered by reporting of specific countries) continued to make up 4.1% of the respondents. The geographic distribution of respondents is similar to the distribution of bioprocessing facility capacity, discussed in sections below.

Further information about biopharmaceutical manufacturing facilities worldwide is available at the *Top 1000 Global Biopharmaceutical Facilities Index Web site* from BioPlan Associates (www. Top1000Bio.com)

Fig 0.3: Facility Location

We note that there was a slight decrease in U.S. respondents (54%) from 59% in 2018, 55% in 2017 and 61% in 2016 (Fig. 0.4). The percentage of Western European respondents (23.5%) increased somewhat from 18.9% in 2018, closer to the 24% in 2017 and the near constant 20% participation since 2011. This year ROW is represented by 22.2%, a slight increase over 21.6% in 2018 and 20.7% in 2017 and surpassing the peak of 22.0% in 2013.

Fig 0.4: Facility Location, by Region

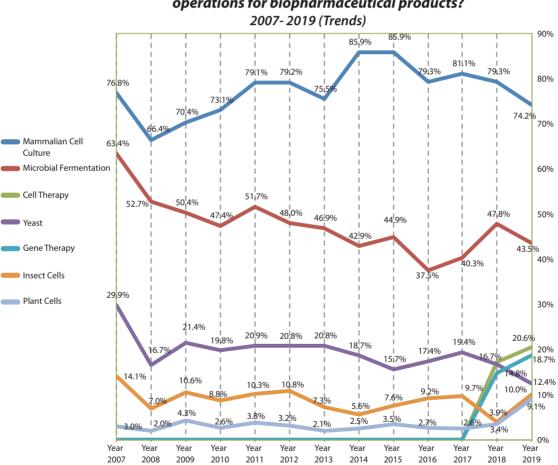
Western Europe respondents include: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden, Switzerland, United Kingdom, Holland, Hungary, Norway and Turkey.

"Rest of World" respondents include: Canada, Australia, India, China, Singapore, Egypt, Japan, Russia, Estonia, Iceland, Israel, Argentina, Brazil, Bulgaria, Cuba, Korea, Lithuania, New Zealand, Poland, Slovenia, South Africa, Taiwan, Thailand, Malaysia, Iran, Mexico, Albania, Philippines, Vietnam, Pakistan, Chile, Indonesia and Puerto Rico.

0-4 AREAS OF BIOPHARMACEUTICAL MANUFACTURING OPERATIONS

Mammalian Cell culture continues to dominate product development and manufacture, and this is reflected in the survey data. Further, a majority of biopharmaceutical products in the development pipeline and entering the market are mammalian-expressed, including various recombinant monoclonal antibody (mAb) products, with this now including multiple biosimilar versions of many of these mAbs. With the continuing incremental increases in mammalian system titers and yields, and with mammalian culture all that many bioprocessing professionals are now knowledgeable about, many facilities are standardizing using mammalian vs. microbial systems. In some cases, this even includes products that could be manufactured in microbial systems, which are generally cheaper or more productive, but are now often initially manufactured in mammalian systems, if these get the job done, such as to produce pre-clinical or early clinical supplies. Besides mammalian being the dominant platform, but generally more expensive than microbial manufacture, technology development continues using mammalian platforms. Mammalian manufacturing has advantages including being more adaptable to single-use systems manufacturing, besides more bioprocessing professionals now being more familiar with mammalian vs. microbial manufacturing. The state of mammalian and microbial manufacturing is also discussed in other sections below.

Respondents reported involvement in seven categories of expression systems for 2019 (see Table 4.1) and changes over time (see Fig. 0.5). Percentages ranged from 74.2% (*Mammalian Cell Culture*) to 9.1% (*Plant Cells*). This year, we see a continued decrease in facilities using "*Mammalian Cell Culture*", down to 74.2% from 79.3% in 2018 and 81.1% in 2017. There was also a decrease in "*Microbial Fermentation*" systems to 43.5% from 47.8% in 2018, following a substantial increase from the previous year's 40.3%. Note: respondents were permitted to select multiple expression systems.

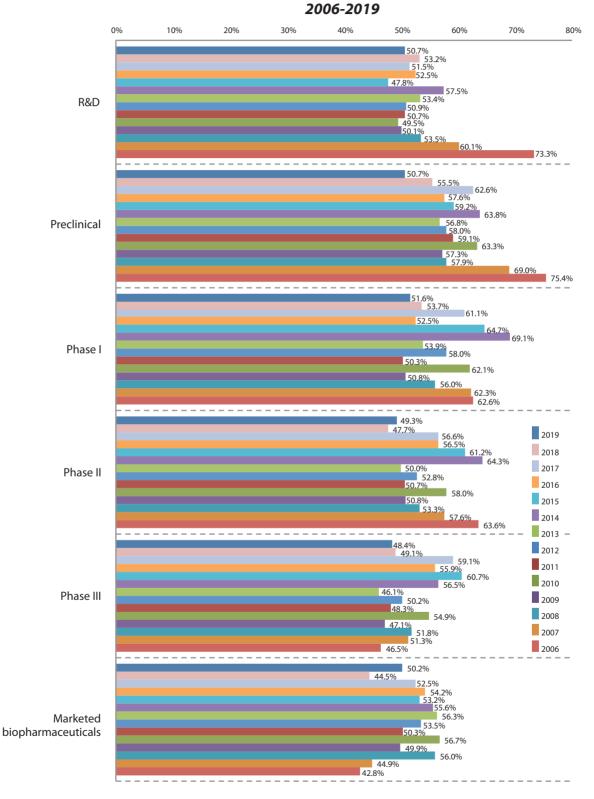

Also observed was a continued decrease in the overall percentage of respondents using *"Yeast"*, from 19.4% in 2017 to 16.7% in 2018 to 12.4% this year. However, following a drop from 9.7% in 2017 to 3.9% in 2018, the use of *"Insect Cells"* rose substantially to 10.0%.

Following a steep increase from 2017 to 2018, "*Microbial Fermentation*" showed a decrease in 2019, from 47.8% to 43.5%. "*Cell Therapy* and *Gene Therapy*", on the other hand, continued to increase, to 20.6% and 18.7% in 2019, respectively. "*Plant Cells*", after a slight increase from 2017 to 2018 (2.6% to 3.4%, less than 1% above the 5-year average), jumped to 9.1% in 2019. The industry appears to be slowly increasing the diversity of basic expression systems/platforms in use.

Answer Options	Year 2019	Year 2018
Mammalian Cell Culture	74.2%	79.3%
Microbial Fermentation	43.5%	47.8%
Cell Therapy	20.6%	17.2%
Yeast	12.4%	16.7%
Gene Therapy	18.7%	14.8%
Insect Cells	10.0%	3.9%
Plant Cells	9.1%	3.4%

Table 0.1 Areas of Biopharmaceutical Manufacturing Operations

Fig 0.5: Biopharmaceutical Manufacturing Systems, (2007-2019) Trends

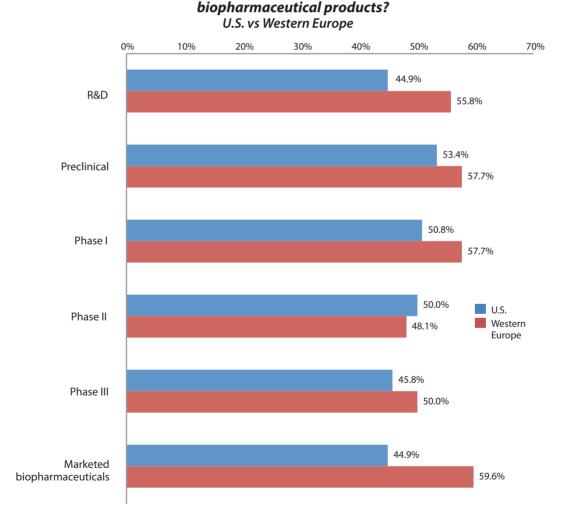

In which of the following does your facility currently have production operations for biopharmaceutical products?

0-5 PRODUCTION OPERATIONS, PHASE OF DEVELOPMENT

We identified the phases of pipeline development in which respondents' organizations (companies) had products (Fig. 0.6). This year, slightly over half (50.7%) of companies had products at the *"R&D"* stage, a decrease from 53.2% in 2018. This reflects a continued shift in R&D back to the relative 50% level seen in almost all previous years, but is still much lower than the 73.3% reported in 2006. Facilities involved with *"Preclinical"* operations were at 50.7%, a decrease from 55.5% in 2018 and 62.6% in 2017. Note: respondents could indicate multiple phases of development for their facility.

This year respondents reported that 50.2% of facilities have biopharmaceutical products on the market, an increase from 44.5% in 2018 and closer to the 52.5% reported in 2017. Those working with *"Phase I"* development saw a drop from 61.1% in 2017 to 53.7% in 2018 to 51.6% in 2019. Facilities working with *"Phase III"* development had a slight drop from 49.1% in 2018 to 48.4% in 2019, following a 10% drop from 2017 that suggested a tightening of development pipelines. Hopefully, developers are making better choices regarding their product candidates, in terms of failing faster and/or less frequently.

The respondent facility phase of development data continue to have small annual fluctuations as the industry continues its overall maturation, with most respondents now employed by companies with revenue streams from marketed biologics. 2009 has been widely noted as the year the biopharmaceutical industry finally, as a whole, turned a profit. Overall, the employers of the surveyed biopharmaceutical manufacturing-related professionals are rather evenly distributed over the pipeline spectrum from pre-clinical through commercial manufacturing, with each phase being worked on by approximately 50% of survey respondent organizations.


Fig 0.6: Phase of Development of Surveyed Respondents, 2006-2019

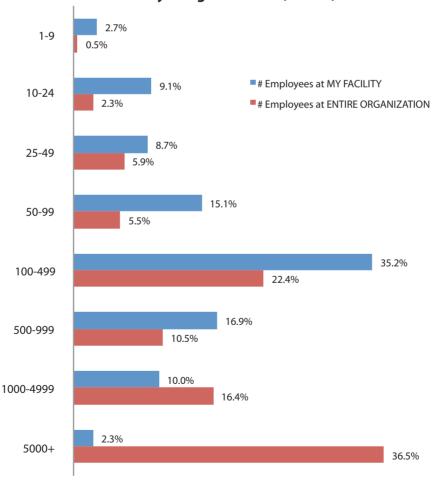
In which phases of development does your organization currently have biopharmaceutical products?

Western European respondents continued to indicate higher involvement by their companies with *"Preclinical"* products at 57.7%, while U.S. companies indicated lower involvement at 53.4% (compared to 58.5% vs. 54.7% in 2018), respectively. This is somewhat unexpected, in the context that overall the U.S. has more biopharmaceutical R&D facilities compared to Europe. This followed a reversal in 2017 from the previous year, when Western European companies showed lower involvement than U.S. companies (55.3% vs. 66.1%).

This year shows a greater difference between U.S. and Western European facilities in terms of *Phase I* clinical trials, at 50.8% vs. 57.7%%, respectively. . In 2018, the percentages were much closer at 53.1% vs. 53.7%, and in 2017, those reporting Phase I clinical trials in the U.S. far outnumbered those in Western Europe at 65.1% vs. 55.3%, respectively. Also seen this year is an increase in *Phase III* clinical trials in Western Europe at 50.0% (vs. 45.8% for the U.S.), compared to 2018 (39.0% vs. 51.6% for the U.S.), following a large decrease from 2017 (55.3% vs. 60.6% for the U.S.).

In which phases of development does your organization currently have

Fig 0.7: Phase of Development of Surveyed Respondents (U.S. vs. Western Europe)


0-6 EMPLOYEES AT FACILITY

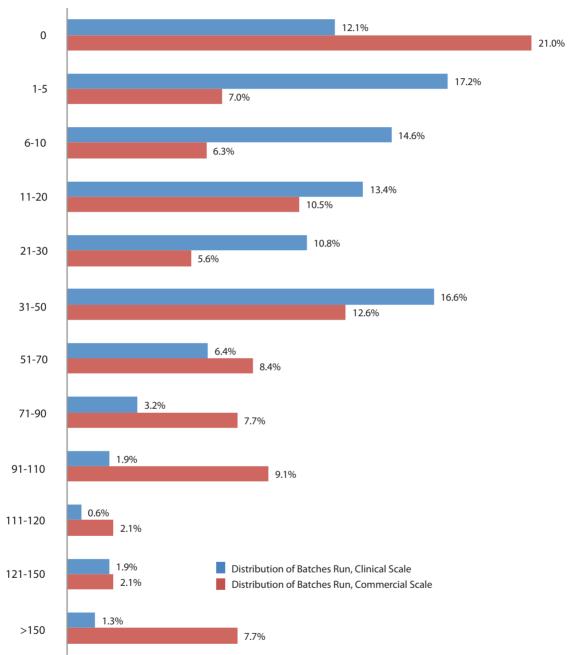
To evaluate issues such as capacity, single-use systems usage and other factors, we asked respondents to report the estimated number of staff within their own facility, and within their total organization (Fig. 0.8).

The largest percentage of respondents continued to be at facilities with *100-499* staff members. Continuing a prior trend, the largest share of respondents, 36.5%, were from parent organizations with *greater than 5,000* employees, most of whom, as expected, were presumably employed by Big (Bio)Pharma companies.

These data reflect the relative distribution of biopharmaceutical manufacturing-related professionals" employment within the biopharmaceutical industry. This includes the increasing involvement and even dominance of larger companies in biopharmaceutical R&D and products marketing. And with most Big Pharma type companies and larger generic drug and foreign pharmaceutical companies continuing to move into biopharmaceuticals, the dominance of large companies as employers of biopharmaceutical manufacturing professionals will likely continue to incrementally increase.

Fig 0.8: Distribution of Employees at Facility, and Organization

About how many employees currently work at your facility & organization? (n=219)


0-7 BATCHES RUN AT FACILITY PER YEAR

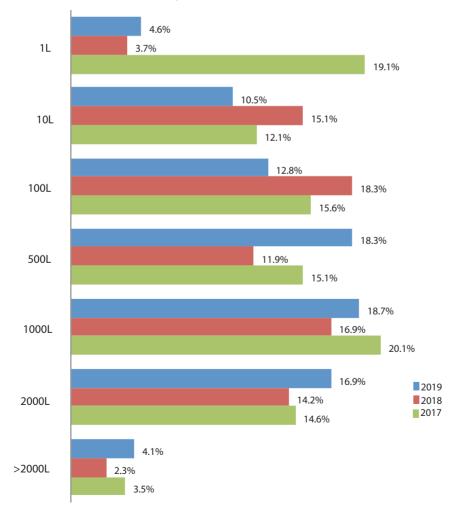
To continue our evaluation of issues such as batch failure rates, and to ensure we are capturing organizations involved in significant manufacturing processes at various scales of manufacture, we again this year asked for estimates of the number of batches or production runs at the respondent's facility (not the organization) over the past 12 months (Fig. 0.9).

We found that for *"Clinical Scale"* manufacturing, more than half of the facilities reported producing between 1 and 20 batches per year (57.3%), a more than 6% increase over 53.8% in 2018. At *"Commercial Scale"*, only 7.7% reported producing over 150 batches per year, down from 8.7% in 2018 and 11.7% in 2017. The level of commercial scale manufacturing between 0-70 batches per year was 71.4%, down from 75.4% in 2018 and 75.9% in 2017.

This year, we saw decreases in runs of 0-10 batches compared to 2018 levels at both *"Clinical Scale"* and *"Commercial Scale"*, from 50.4% to 43.9% and from 47.6% to 34.3%, respectively.

Fig 0.9: Distribution of Total Batches Run at Facility Last Year, by Scale of Production

How many total batches did your facility run during the past 12 months? (Commercial vs Clinical Scale)


0-8 SINGLE-USE BIOREACTOR CAPACITY IN USE AT SITE

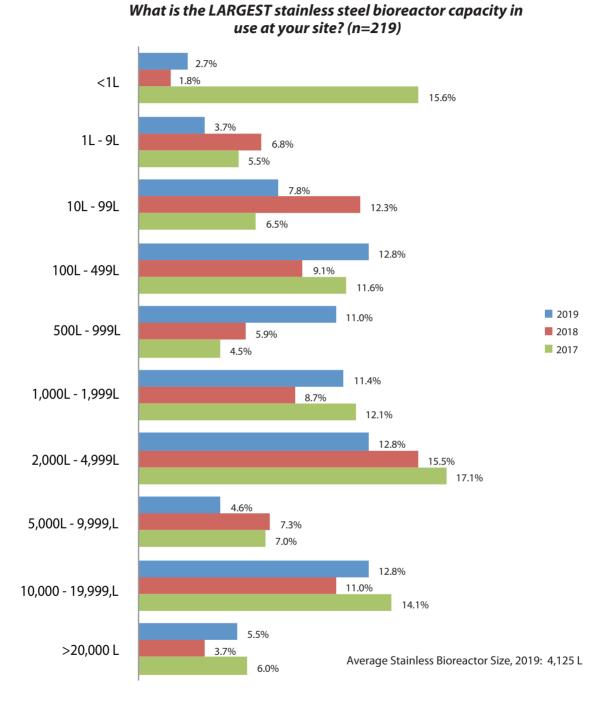
To follow the trend of single-use bioreactor capacity within the industry, we asked respondents again this year about the largest single-use bioreactor capacity in use at their site, in liters (Fig. 0.10).

The largest increase from 2018 was *500 L* capacity, jumping from 11.9% to 18.3% in this year's survey. The largest total percentage indicated *1,000 L*, at 18.7%, an increase from 16.9% in 2018 continuing to indicate likely late-stage clinical or even commercial manufacturing facilities. Behind *500 L* and *1,000 L*, the next highest percentage was again for *2,000 L*, at 16.9%, an increase from 14.2% in 2018.

More than one-third of respondents reported \geq 1,000 *L* single-use bioreactors at their facilities, i.e., working at large scale by single-use standards, an 18% increase from 2018 (33.4% vs. 39.7%). As expected, few respondent facilities had single-use bioreactors with greater than 2,000 *L* capacity, although, there was a significant increase over 2018, from 2.3% to 4.1%.

Fig 0.10: Distribution of Largest SINGLE-USE Bioreactor Capacity

What is the LARGEST single-use bioreactor capacity in use at your site? (n=219)


0-9 STAINLESS STEEL BIOREACTOR CAPACITY IN USE AT SITE

We continued to ask respondents again this year what was the capacity of the largest stainlesssteel bioreactor at their facility (Fig. 0.11).

In 2019, the largest reported average size of on-site stainless steel bioreactors was 4,125 L, compared with an average of about 659 L for single-use bioreactors at survey respondents' sites.

The top three percentages reported were for 100–499 L, 2,000–4,999 L, and 10,000–19,999 L, each at 12.8%, compared to 2018, the largest percentages were for 2,000-4,999 L at 15.5%, followed by <10–99 L at 12.3%, and 10,000-19,999 L at 11.0%. The proportion with largest stainless steel bioreactors on-site with less than 1,000 L capacity increased from 35.9% in 2018 to 38.0%.

Comparing the data reported for the largest in-house single-use vs. stainless steel bioreactors, over one-third (35.7%) of facilities with stainless steel have \geq 2,000 L bioreactors vs. 21.0% for single-use (compared to 37.5% and 16.5%, respectively, in 2018). This indicates increasing adoption of single-use bioreactors for entry-level single-use commercial manufacturing mostly involving use of 2,000 L single-use bioreactors.

Fig 0.11: Distribution of Largest STAINLESS Bioreactor Capacity

CHAPTER 1: INTRODUCTION AND DISCUSSION

1-1 INTRODUCTION: THE PHARMACEUTICAL AND BIOPHARMACEUTICAL INDUSTRIES

The pharmaceutical and its biopharmaceutical industry subset remain active, profitable and growing economic technology- and science-based activities and industries. This is despite about a decade ago having successfully survived the worldwide economic problems; the industry increasingly being targeted for criticism for excessively high prices; and biosimilars/biogenerics increasingly posing a threat to established products. There are estimated to be well over 10,000 therapeutics in R&D, both drugs (chemically-derived pharmaceuticals) and biopharmaceuticals (biotechnology- or living organism-derived pharmaceuticals), with nearly 40,000 ongoing or recently reported clinical trials. Among these, \geq 40% or likely soon approaching 5,000 candidate products in R&D are biopharmaceutical products. A significant portion, now >1,700, products in the development pipeline, are follow-on biopharmaceuticals, mostly biosimilars and biobetters in major markets and a large number of biogenerics in lesserand non-regulated developing countries and international commerce.

This 16th annual version of this publication continues to use consistent definitions for "biopharmaceutical" and "bioprocessing. "Biopharmaceutical" refers to pharmaceuticals, generally therapeutics, manufactured from and/or by living organisms; and the biotechnology processing involved is "bioprocessing." Source organisms are generally microbial, including nearly all sources for recombinant biopharmaceutical products, but can also come from other living organisms, e.g., Factor VIII or stem cells derived from pooled human blood/plasma. Biopharmaceuticals do not include pharmaceuticals that are synthetically manufactured or can be considered small molecule drugs. Generally, if a drug substance's (active agent's) structure can be represented or drawn without having to resort to use of names or symbols for component parts, such as amino acids with proteins and many fermentation products, including many antibiotics, it is a small molecule drug. Similarly, synthetic and purely semi-synthetic substances (e.g., purified enzymes used to drive chemical reactions) are not considered biopharmaceuticals.

The large number of biosimilars and biobetters in development indicate the maturation of the biopharmaceutical industry, as its current major blockbuster products and established platform technologies start to go off-patent. This represents a considerable shift in the biopharmaceuticals' product mix. Major changes brought be follow-on biopharmaceuticals include a rapidly increasing number of marketed biopharmaceutical products, particularly compared to as short as 5 or more years ago, and a number of new players entering the biopharmaceutical industry. The large proportion of industry R&D and manufacturing being devoted to follow-ons also contributes to basic shift in the pharmaceutical industry and

healthcare from small molecule drugs to biopharmaceuticals with increasing generic drug sector -like competition. This will accelerate in the U.S. market, the largest biopharmaceuticals' market, once FDA implements regulations for "interchangeable" biosimilars.

Until relatively recently, pharmaceutical companies of all sizes, particularly the Big Pharmatype companies that now dominate biopharmaceutical R&D, have often continued to cut back on expenses as much as possible and consolidate R&D and companies, with the resulting companies often ending up concentrating on developing fewer products. Most every major merger/acquisition seems to include the acquirer up-front claiming the new company will have a larger and healthier pipeline products, increased capacity and expertise, etc. However, it also seems that this rarely happens, with much merger/acquisition activity apparently more to distract stockholders and boost appearances and through this stock value, while the new bigger postmerger/acquisition companies almost invariably soon consolidate and cut-back their combined R&D pipelines, close facilities, outsource more tasks previously considered better done inhouse, etc. Luckily, this trend is slowing, although this could just be from there being fewer bigtime players to allow much additional merging and purging among the largest companies. But in terms of biopharmaceuticals, any decreases in existing player company R&D is likely being more than counter-balanced by both other established pharmaceutical and new companies worldwide moving into biopharmaceuticals. This increasingly includes a large number of new entrants moving into the biosimilar/biogenerics, cellular and gene therapies areas. As discussed below, the biopharmaceuticals industry keeps on expanding at a rather steady pace.

But even if there were significant pipeline shrinkage, this may not be a negative trend. This could simply reflect the industry doing a better job in eliminating fewer promising candidates before they enter or earlier in clinical trials. This "failing faster," i.e., earlier in development, is generally much less costly and disruptive than products failing later in development. If the industry is doing a better job of weeding out poor candidate products earlier, the industry may be on track for increased future success and increased productivity and profits, with fewer costly late-stage failures and a higher percentage of pipeline products making it to the market.

Along with more R&D and marketed products, the pharmaceutical R&D pipeline and industry are becoming increasingly dependent on biopharmaceuticals. Besides profits, with biopharmaceuticals generally providing higher profits, this includes public image. Big Pharma companies, led by PhRMA, have been rather successful in their decade-plus efforts to coopt the terms "biopharmaceuticals" and "biopharma," particularly in popular use, to apply to themselves and include all pharmaceuticals, particularly all those that are innovative or otherwise have a positive public image [see Rader, R.A., "(Re)Defining Biopharmaceutical" *Nature Biotechnology*, July 2008, 26(7), p. 743-751]. Thus, it is now often a rarity when the terms "biopharma" or "biopharmaceutical" refer to biopharmaceuticals (biotechnology-manufactured) vs. just innovative or even all pharmaceuticals. PhRMA and many others now use the term "biopharmaceutical" with much consistency, but not to refer to actual biopharmaceuticals. The greater pharmaceutical industry and its hangers-on, including stock analysts and the trade press, often variably use the term with little consistency, and rarely ever explain the term's use/ scope. Readers should use caution and inspect any definitions or scope notes provided where information about the "biopharmaceutical" or "biopharma" industry is being discussed. Many of those who use the term now are not using it with any explicit linkage to biotechnology (with biopharmaceuticals derived by biotech methods, i.e., manufactured using live organisms).

Biopharmaceutical products are being developed by an ever-increasing cross section of the pharmaceutical industry, including Big Pharma, generic drug, and foreign companies, with many of these new entrants entering the field by developing biosimilars. These newer types of entrants, along with smaller biotech business model-type biopharmaceutical developers

which have been the traditional source for most innovative biopharmaceuticals before licensing by larger companies, are continuing to expand the global biologics pipeline. Biosimilars are bringing in many new biopharmaceutical developers and manufacturing facilities. This includes new entrants based in China, India and other developing countries increasingly entering biopharmaceutical R&D. An increasing number and percentage of new pharmaceuticals entering the market will be biopharmaceuticals vs. small molecule drugs; and these will originate from more diverse sources. Combine this with biopharmaceuticals (vs. drugs) generally costing much more and providing higher profit margins, and the pharmaceutical industry will increasingly be dependent on biopharmaceuticals for profits, innovation, and its basic survival.

As biopharmaceuticals become an even more important part of the pharmaceutical industry and with many new players entering the field, as our annual survey shows, most every current manufacturing facility is expanding its bioprocessing capacity in one way or another. Not only must bioprocessing output expand to handle manufacture of an increasing number of approved products and higher volumes as markets for many current products further expand, e.g., with approvals for new indications and growth in international markets, the industry must also be capable of handling novel bioprocessing and biopharmaceuticals. The industry must continue to develop manufacturing capacity for a wide range of new(er) product types, e.g. cellular therapies, gene therapies, ADCs, stripped-down antibodies, RNAi, live microbes as therapeutics, etc., with ever more diverse bioprocessing requirements.

The strategic importance of biopharmaceutical manufacturing and manufacturing capacity is increasing, and understanding the markets for biopharmaceuticals and bioprocessing technologies, industry capacity and services is becoming ever more important to those in the industry. Planning and decision-making concerning the manufacture of biopharmaceuticals are becoming more complex as companies continue, whether spurred by habit, actual need or for the sake of investors, to implement cost-saving efforts periodically or even constantly. This can include cutting back on the number of products in their development pipelines or outsourcing of support and even critical tasks.

Effective planning within the (bio)pharmaceutical and bioprocessing markets is required to avoid problems later. This ideally involves a high level of leadership, partnership, information sharing, and communication between manufacturers, CMOs and bioprocessing technology and equipment suppliers as they develop and adopt new manufacturing technologies, devices and capacity to keep pace with industry needs. Strategic production decisions must be based on solid bioprocessing and sales projection data, combined with a broad understanding of trends and effective benchmarking of capacity and production issues. This study provides an on-going evaluation of the vital manufacturing trends shaping this industry, and is designed to help keep those in the industry aware of the internal industry and external trends and issues affecting biopharmaceutical decision-making.

Many companies, even more affluent and established ones, are continuing to aggressively look for opportunities to cut costs and increase efficiency, with this continuing to benefit contract manufacturing and research organizations (CMOs and CROs). But many other companies are increasingly confident and are pushing ahead investing in in-house resources and doing full development and commercial manufacturing in-house. Prior rather common periodic severe arbitrary cuts in staff and divestment of facilities have largely ended, but this may simply reflect already reaching the limits of eliminating in-house expertise and facilities. Many, particularly the largest biopharmaceutical companies.

Among many of the very largest companies, including Big Pharma, we still see cycles of shortterm on-paper/theoretical profits and claims of synergies driving decisions and related investor concerns, with companies needing to distract investors from long-term problems, such as fewer products making it to the market, lower R&D productivity and innovation, payers resisting highcost product coverage, etc., through habitual company merging and purging. This commonly includes merging or acquiring smaller (or just as large) companies and then consolidating, with staff lay-offs, closing of facilities, abandonment of products in the combined company pipelines, and other cutbacks. While involved companies typically claim synergies, that their resulting pipelines will be better, that there will be more innovation, etc., this rarely happens as projected, but the new larger company lives on, with investors happy for the moment. But as the consequences of mergers and acquisitions and related consolidations and shedding of corporate resources and staff catch-up with the acquiring companies, they are then forced again to go through merge-purge cycles just to survive and please or distract investors. Many in industry seemingly have come to expect such consolidations as normal, how the mainstream major market-based pharmaceutical industry works, how these companies add to their valuations, etc.

A large portion of biopharmaceuticals coming to market involves therapies for diseases often ignored or currently untreatable, making them particularly welcome and needed. In recent years, this includes many products for orphan indications, with FDA and other regulatory agencies proactively supporting this. This includes FDA granting transferrable vouchers now selling for up to several \$100 million each that grant the holder more rapid evaluation of product applications.

While much action in major market, affluent countries involves innovative orphan therapeutics development, non-innovative biogenerics directed to lesser- and non-regulated international markets is where the growth is in developing countries. These markets are also but much less involved with development of biosimilars (with biosimilar approvals requiring extensive comparative clinical and analytical testing often not performed with biogenerics; generally restricted to more regulated markets). Many new entrant foreign companies of all sizes and types are developing biosimilars and/or biogenerics and plan to use these to establish themselves in the biopharmaceutical industry. This is resulting in a significant increase in the number of biopharmaceutical players and manufacturing facilities, and as noted below, an increase in single-use-based manufacturing facilities.

Most large commercial biopharmaceutical manufacturing capacity expansions continue to involve building fixed stainless steel bioreactor-based bioprocessing systems, with commercial manufacturing using single-use systems just getting started. In the extreme, large stainless steel facilities coming online are exemplified by Samsung and Celltrion in S. Korea. Celltrion has reported plans to expand from its already super-size 140,000 L to 330,000 L capacity. This continued use of stainless steel at the largest scales is in contrast with production of supplies for R&D and clinical testing, which is now dominated by use of single-use/ disposable bioreactor-based systems, with this requiring much smaller bioreactors, facilities and infrastructure investment. About the only area of pre-commercial manufacturing not substantively using single-use systems at least is microbial fermentation, which generally continues to remain unchanged. Microbial fermentation continues to use much more extreme conditions (mixing, higher temperatures, etc.) than mammalian cell culture, with this restricting use of single-use systems. Overall, we are early in what will likely be a significant trend of developers adopting single-use systems for commercial product manufacturing, often involved scaling-out with multiple ≤2,000 L bioreactor-based process lines in parallel.

Recently there has been a significant increase in new single-use commercial-scale manufacturing facilities under construction and coming online. A good portion of these facilities are for biosimilars manufacture; and most are "flexible," able to be adapted for manufacture of multiple products (vs. being single product dedicated). These new single-use commercial manufacturing facilities include modular facilities, including the first good-sized modular

For Ordering Information on the Full Report, contact

BioPlan Associates, Inc. 301-921-5979 www.bioplanassociates.com/16th

SIXTEENTH ANNUAL

Report and Survey of Biopharmaceutical Manufacturing Capacity and Production

Another report in the BioPlan Associates, Inc.'s biopharmaceutical series:

- Advances in Biopharmaceutical Technology in China, 2nd Ed., 2018, Soc. Ind. Microbiol, Biotech
- Top 60 Biopharmaceutical Organizations in China, 2nd Ed., 2018
- Quick Guide to Clinical Trials, 2nd Ed., 2017
- Biosimilars Pipeline Database http://www.biosimilarspipeline.com/index.html
- Top 1000 Global Biomanufacturing Facilities Global analysis and ranking of capacity, employment and pipelines, www.top1000bio.com
- Biopharmaceutical Expression Systems and Genetic Engineering Technologies
- Advances in Biopharmaceutical Manufacturing and Scale-up Production, Amer. Soc. Micro.
- Biopharmaceutical Products in the U.S. and European Markets, 8th Ed.
- Advances in Biopharmaceutical Technology in India
- Top 60 Biopharmaceutical Organizations in India
- Quick Guide to Biotechnology in the Middle East
- Quick Guide to Biofuels

The 16th Annual Report and Survey of Biopharmaceutical Manufacturing Capacity and Production is the most recent study of biotherapeutic developers and contract manufacturing organizations' current and projected future capacity and production. The survey includes responses from **221 responsible individuals** at biopharmaceutical manufacturers and contract manufacturing organizations from **24 countries**. The survey methodology includes input from an additional **120 direct suppliers** of raw materials, services, and equipment to this industry. In addition to current capacity issues, this study covers downstream processing problems, new technologies, expression systems, quality initiatives, human resources and training needs of biopharmaceutical manufacturers, growth rates of suppliers to this industry, and many other areas.

Copyright © 2019 by BioPlan Associates, Inc.

April 2019 ISBN 978-1-934106-36-5

